Виды диодов и их применение презентация. Выпрямительные диоды


https://accounts.google.com


Подписи к слайдам:

Электронно-дырочный переход. Транзистор

Электронно-дырочный переход (или n – p -переход) – это область контакта двух полупроводников с разными типами проводимости.

При контакте двух полупроводников n - и p -типов начинается процесс диффузии: дырки из p -области переходят в n -область, а электроны, наоборот, из n -области в p -область. В результате в n -области вблизи зоны контакта уменьшается концентрация электронов и возникает положительно заряженный слой. В p -области уменьшается концентрация дырок и возникает отрицательно заряженный слой. На границе полупроводников образуется двойной электрический слой, электрическое поле которого препятствует процессу диффузии электронов и дырок навстречу друг другу.

Пограничная область раздела полупроводников с разными типами проводимости (запирающий слой) обычно достигает толщины порядка десятков и сотен межатомных расстояний. Объемные заряды этого слоя создают между p- и n-областями запирающее напряжение U з, приблизительно равное 0,35 В для германиевых n–p-переходов и 0,6 В для кремниевых.

В условиях теплового равновесия при отсутствии внешнего электрического напряжения полная сила тока через электронно-дырочный переход равна нулю.

Если n – p -переход соединить с источником так, чтобы положительный полюс источника был соединен с p -областью, а отрицательный с n -областью, то напряженность электрического поля в запирающем слое будет уменьшаться, что облегчает переход основных носителей через контактный слой. Дырки из p -области и электроны из n -области, двигаясь навстречу друг другу, будут пересекать n – p -переход, создавая ток в прямом направлении. Сила тока через n – p -переход в этом случае будет возрастать при увеличении напряжения источника.

Если полупроводник с n – p -переходом подключен к источнику тока так, что положительный полюс источника соединен с n -областью, а отрицательный – с p -областью, то напряженность поля в запирающем слое возрастает. Дырки в p -области и электроны в n -области будут смещаться от n – p -перехода, увеличивая тем самым концентрации неосновных носителей в запирающем слое. Ток через n – p -переход практически не идет. Весьма незначительный обратный ток обусловлен только собственной проводимостью полупроводниковых материалов, т. е. наличием небольшой концентрации свободных электронов в p -области и дырок в n -области. Напряжение, поданное на n – p -переход в этом случае называют обратным.

Способность n – p -перехода пропускать ток практически только в одном направлении используется в приборах, которые называются полупроводниковыми диодами. Полупроводниковые диоды изготавливаются из кристаллов кремния или германия. При их изготовлении в кристалл c каким-либо типом проводимости вплавляют примесь, обеспечивающую другой тип проводимости. Полупроводниковые диоды обладают многими преимуществами по сравнению с вакуумными диодами – малые размеры, длительный срок службы, механическая прочность. Существенным недостатком полупроводниковых диодов является зависимость их параметров от температуры. Кремниевые диоды, например, могут удовлетворительно работать только в диапозоне температур от –70 °C до 80 °C. У германиевых диодов диапазон рабочих температур несколько шире.

Полупроводниковые приборы не с одним, а с двумя n – p -переходами называются транзисторами. Название происходит от сочетания английских слов: transfer – переносить и resistor – сопротивление. Обычно для создания транзисторов используют германий и кремний. Транзисторы бывают двух типов: p – n – p -транзисторы и n – p – n -транзисторы.

Германиевый транзистор p – n – p -типа представляет собой небольшую пластинку из германия с донорной примесью, т. е. из полупроводника n -типа. В этой пластинке создаются две области с акцепторной примесью, т. е. области с дырочной проводимостью.

В транзисторе n – p – n -типа основная германиевая пластинка обладает проводимостью p -типа, а созданные на ней две области – проводимостью n -типа.

Пластинку транзистора называют базой (Б), одну из областей с противоположным типом проводимости – коллектором (К), а вторую – эмиттером (Э). Обычно объем коллектора превышает объем эмиттера.

В условных обозначениях разных структур стрелка эмиттера показывает направление тока через транзистор.

Включение в цепь транзистора p – n – p -структуры Переход «эмиттер–база» включается в прямом (пропускном) направлении (цепь эмиттера), а переход «коллектор–база» – в запирающем направлении (цепь коллектора).

При замыкании цепи эмиттера дырки – основные носители заряда в эмиттере – переходят из него в базу, создавая в этой цепи ток I э. Но для дырок, попавших в базу из эмиттера, n – p -переход в цепи коллектора открыт. Большая часть дырок захватывается полем этого перехода и проникает в коллектор, создавая ток I к.

Для того, чтобы ток коллектора был практически равен току эмиттера, базу транзистора делают в виде очень тонкого слоя. При изменении тока в цепи эмиттера изменяется сила тока и в цепи коллектора.

Если в цепь эмиттера включен источник переменного напряжения, то на резисторе R , включенном в цепь коллектора, также возникает переменное напряжение, амплитуда которого может во много раз превышать амплитуду входного сигнала. Следовательно, транзистор выполняет роль усилителя переменного напряжения.

Однако, такая схема усилителя на транзисторе является неэффективной, так как в ней отсутствует усиление сигнала по току, и через источники входного сигнала протекает весь ток эмиттера I э. В реальных схемах усилителей на транзисторах источник переменного напряжения включают так, чтобы через него протекал только небольшой ток базы I б = I э – I к. Малые изменения тока базы вызывают значительные изменения тока коллектора. Усиление по току в таких схемах может составлять несколько сотен.

В настоящее время полупроводниковые приборы находят исключительно широкое применение в радиоэлектронике. Современная технология позволяет производить полупроводниковые приборы – диоды, транзисторы, полупроводниковые фотоприемники и т. д. – размером в несколько микрометров. Качественно новым этапом электронной техники явилось развитие микроэлектроники, которая занимается разработкой интегральных микросхем и принципов их применения.

Интегральной микросхемой называют совокупность большого числа взаимосвязанных элементов – сверхмалых диодов, транзисторов, конденсаторов, резисторов, соединительных проводов, изготовленных в едином технологическом процессе на одном кристалле. Микросхема размером в 1 см 2 может содержать несколько сотен тысяч микроэлементов. Применение микросхем привело к революционным изменениям во многих областях современной электронной техники. Это особенно ярко проявилось в области электронной вычислительной техники. На смену громоздким ЭВМ, содержащим десятки тысяч электронных ламп и занимавшим целые здания, пришли персональные компьютеры.

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него:

Разделы: Физика , Конкурс «Презентация к уроку»

Презентация к уроку






























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Урок в 10-м классе.

Тема: р- и n - типов. Полупроводниковый диод. Транзисторы».

Цели:

  • образовательные : сформировать представление о свободных носителях электрического заряда в полупроводниках при наличии примесей с точки зрения электронной теории и опираясь на эти знания выяснить физическую сущность p-n-перехода; научить учащихся объяснять работу полупроводниковых приборов, опираясь на знания о физической сущности p-n-перехода;
  • развивающие : развивать физическое мышление учащихся, умение самостоятельно формулировать выводы, расширять познавательный интерес, по­знавательную активность;
  • воспитательные : продолжить формирование научного мировоззрения школьников.

Оборудование: презентация по теме: «Полупроводники. Электрический ток через контакт полупроводников р- и n - типов. Полупроводниковый диод. Транзистор», мультимедийный проектор.

Ход урока

I. Организационный момент.

II. Изучение нового материала.

Слайд 1.

Слайд 2. Полупроводник – вещество, у которого удельное сопротивление может изменяться в широких пределах и очень быстро убывает с повышением температуры, а это значит, что электрическая проводимость (1/R) увеличивается.

Наблюдается у кремния, германия, селена и у некоторых соединений.

Слайд 3.

Механизм проводимости у полупроводников

Слайд 4.

Кристаллы полупроводников имеют атомную кристаллическую решетку, где внешние Слайд 5. электроны связаны с соседними атомами ковалентными связями.

При низких температурах у чистых полупроводников свободных электронов нет и они ведут себя как диэлектрики.

Полупроводники чистые (без примесей)

Если полупроводник чистый(без примесей), то он обладает собственной проводимостью, которая невелика.

Собственная проводимость бывает двух видов:

Слайд 6. 1) электронная (проводимость "n " – типа)

При низких температурах в полупроводниках все электроны связаны с ядрами и сопротивление большое; при увеличении температуры кинетическая энергия частиц увеличивается, рушатся связи и возникают свободные электроны – сопротивление уменьшается.

Свободные электроны перемещаются противоположно вектору напряженности электрического поля.

Электронная проводимость полупроводников обусловлена наличием свободных электронов.

Слайд 7.

2) дырочная (проводимость " p" – типа)

При увеличении температуры разрушаются ковалентные связи, осуществляемые валентными электронами, между атомами и образуются места с недостающим электроном – "дырка".

Она может перемещаться по всему кристаллу, т.к. ее место может замещаться валентными электронами. Перемещение "дырки" равноценно перемещению положительного заряда.

Перемещение дырки происходит в направлении вектора напряженности электрического поля.

Кроме нагревания, разрыв ковалентных связей и возникновение собственной проводимости полупроводников могут быть вызваны освещением (фотопроводимость) и действием сильных электрических полей. Поэтому полупроводники обладают ещё и дырочной проводимостью.

Общая проводимость чистого полупроводника складывается из проводимостей "p" и "n" -типов и называется электронно-дырочной проводимостью.

Полупроводники при наличии примесей

У таких полупроводников существует собственная + примесная проводимость.

Наличие примесей проводимость сильно увеличивает.

При изменении концентрации примесей изменяется число носителей электрического тока – электронов и дырок.

Возможность управления током лежит в основе широкого применения полупроводников.

Существуют:

Слайд 8. 1) донорные примеси (отдающие) – являются дополнительными поставщиками электронов в кристаллы полупроводника, легко отдают электроны и увеличивают число свободных электронов в полупроводнике.

Слайд 9. Это проводники " n " – типа , т.е. полупроводники с донорными примесями, где основной носитель заряда – электроны, а неосновной – дырки.

Такой полупроводник обладает электронной примесной проводимостью. Например – мышьяк.

Слайд 10. 2) акцепторные примеси (принимающие) – создают "дырки" , забирая в себя электроны.

Это полупроводники " p "- типа , т.е. полупроводники с акцепторными примесями, где основной носитель заряда – дырки, а неосновной – электроны.

Такой полупроводник обладает дырочной примесной проводимостью . Слайд 11. Например – индий. Слайд 12.

Рассмотрим, какие физические процессы происходят при контакте двух полупроводников с различным типом проводимости, или, как говорят, в р-n-переходе.

Слайд 13-16.

Электрические свойства "p-n" перехода

"p-n" переход (или электронно-дырочный переход) – область контакта двух полупроводников, где происходит смена проводимости с электронной на дырочную (или наоборот).

В кристалле полупроводника введением примесей можно создать такие области. В зоне контакта двух полупроводников с различными проводимостями будет проходить взаимная диффузия. электронов и дырок и образуется запирающий электрический слой. Электрическое поле запирающего слоя препятствует дальнейшему переходу электронов и дырок через границу. Запирающий слой имеет повышенное сопротивление по сравнению с другими областями полупроводника.

Внешнее электрическое поле влияет на сопротивление запирающего слоя.

При прямом (пропускном) направлении внешнего электрического поля электрический ток проходит через границу двух полупроводников.

Т.к. электроны и дырки движутся навстречу друг другу к границе раздела, то электроны, переходя границу, заполняют дырки. Толщина запирающего слоя и его сопротивление непрерывно уменьшаются.

Пропускной режим р-n перехода:

При запирающем (обратном) направлении внешнего электрического поля электрический ток через область контакта двух полупроводников проходить не будет.

Т.к. электроны и дырки перемещаются от границы в противоположные стороны, то запирающий слой утолщается, его сопротивление увеличивается.

Запирающий режим р-n перехода :

Таким образом, электронно-дырочный переход обладает односторонней проводимостью.

Полупроводниковые диоды

Полупроводник с одним "p-n" переходом называется полупроводниковым диодом.

– Ребята, запишите новую тему: «Полупроводниковый диод».
– Какой там ещё идиот?», – с улыбкой переспросил Васечкин.
– Не идиот, а диод! – ответил учитель, – Диод, значит имеющий два электрода, анод и катод. Вам ясно?
– А у Достоевского есть такое произведение – «Идиот», – настаивал Васечкин.
– Да, есть, ну и что? Вы на уроке физики, а не литературы! Прошу больше не путать диод с идиотом!

Слайд 17–21.

При наложении эл.поля в одном направлении сопротивление полупроводника велико, в обратном – сопротивление мало.

Полупроводниковые диоды основные элементы выпрямителей переменного тока.

Слайд 22–25.

Транзисторами называют полупроводниковые приборы, предназначенные для усиления, генерирования и преобразования электрических колебаний.

Полупроводниковые транзисторы – также используются свойства" р-n "переходов, - транзисторы используются в схемотехнике радиоэлектронных приборов.

В большую «семью» полупроводниковых приборов, называемых транзисторами, входят два вида: биполярные и полевые. Первые из них, чтобы как – то отличить их от вторых, часто называют обычными транзисторами. Биполярные транзисторы используются наиболее широко. Именно с них мы пожалуй и начнем. Термин «транзистор» образован из двух английских слов: transfer – преобразователь и resistor – сопротивление. В упрощенном виде биполярный транзистор представляет собой пластину полупроводника с тремя (как в слоеном пироге) чередующимися областями разной электропроводности (рис. 1), которые образуют два р – n перехода. Две крайние области обладают электропроводностью одного типа, средняя – электропроводностью другого типа. У каждой области свой контактный вывод. Если в крайних областях преобладает дырочная электропроводность, а в средней электронная (рис. 1, а), то такой прибор называют транзистором структуры p – n – р. У транзистора структуры n – p – n, наоборот, по краям расположены области с электронной электропроводностью, а между ними – область с дырочной электропроводностью (рис. 1, б).

При подаче на базу транзистора типа n-p-n положительного напряжения он открывается, т. е. сопротивление между эмиттером и коллектором уменьшается, а при подаче отрицательного, наоборот – закрывается и чем сильнее сила тока, тем сильнее он открывается или закрывается. Для транзисторов структуры p-n-p все наоборот.

Основой биполярного транзистора (рис. 1) служит небольшая пластинка германия или кремния, обладающая электронной или дырочной электропроводимостью, то есть n-типа или p-типа. На поверхности обеих сторон пластинки наплавляют шарики примесных элементов. При нагревании до строго определенной температуры происходи диффузия (проникновение) примесных элементов в толщу пластинки полупроводника. В результате в толще пластинки возникают две области, противоположные ей по электропроводимости. Пластинка германия или кремния p-типа и созданные в ней области n-типа образуют транзистор структуры n-p-n (рис. 1,а), а пластинка n-типа и созданные в ней области p-типа - транзистор структуры p-n-p (рис. 1,б).

Независимо от структуры транзистора его пластинку исходного полупроводника называют базой (Б), противоположную ей по электропроводимости область меньшего объема - эмиттером (Э), а другую такую же область большего объема - коллектором (К). Эти три электрода образуют два p-n перехода: между базой и коллектором - коллекторный, а между базой и эмиттером - эмиттерный. Каждый из них по своим электрическим свойствам аналогичен p-n переходам полупроводниковых диодов и открывается при таких же прямых напряжениях на них.

Условные графические обозначения транзисторов разных структур отличаются лишь тем, что стрелка, символизирующая эмиттер и направление тока через эмиттерный переход, у транзистора структуры p-n-p обращена к базе, а у транзистора n-p-n - от базы.

Слайд 26–29.

III. Первичное закрепление.

  1. Какие вещества называются полупроводниками?
  2. Какую проводимость называют электронной?
  3. Какая проводимость наблюдается ещё у полупроводников?
  4. О каких примесях теперь вам известно?
  5. В чем заключается пропускной режим p-n- перехода.
  6. В чем заключается запирающий режим p-n- перехода.
  7. Какие полупроводниковые приборы вам известны?
  8. Где и для чего используют полупроводниковые приборы?

IV. Закрепление изученного

  1. Как меняется удельное сопротивление полупроводников: при нагревании? При освещении?
  2. Будет ли кремний сверхпроводящим, если его охладить до температуры, близкой к абсолютному нулю? (нет, с понижением температуры сопротивление кремния увеличивается).


стабилитрона
7

Стабилизатор напряжения на основе стабилитрона и ВАХ стабилитронов 1-КС133А, 2-КС156А,3-КС182Ж, 4-КС212Ж

Стабилизатор напряжения на основе
стабилитрона и ВАХ стабилитронов 1-КС133А, 2КС156А,3-КС182Ж, 4-КС212Ж
Степанов Константин Сергеевич

Вольтамперные характеристики
1- КС133А, 2-КС156А, 3-КС182Ж, 4-КС212Ж
9
Степанов Константин Сергеевич

Варикап: обозначение и его вах
Максимальная емкость варикапа
составляет 5-300 пФ
10
Степанов Константин Сергеевич

Степанов Константин Сергеевич

ПРИМЕНЕНИЕ ДИОДОВ

В электротехнике:
1) выпрямительные устройства,
2) защитные устройства.
Степанов Константин Сергеевич

СХЕМЫ ВЫПРЯМИТЕЛЕЙ

Степанов Константин Сергеевич

Степанов Константин Сергеевич

Работа однополупериодного выпрямителя

Напряжение на выходе выпрямителя


u (t) = u (t) - u (t),
В виде среднего значения –
U = Um/π,


нагр
входа
нагр
Степанов Константин Сергеевич
диода

СХЕМЫ ВЫПРЯМИТЕЛЕЙ

Однофазный двухполупериодный выпрямитель
со средней точкой
Степанов Константин Сергеевич

Однофазный двухполупериодный выпрямитель со средней точкой

Степанов Константин Сергеевич

Работа двухполупериодного выпрямителя


также определяется по второму закону
Кирхгофа:
В виде мгновенного значения –
u (t)= u (t) - u (t),
В виде действующего значения –
U = 2Um/π
нагр
входа
нагр
Степанов Константин Сергеевич
диода

СХЕМЫ ВЫПРЯМИТЕЛЕЙ

Степанов Константин Сергеевич

Однофазный мостовой выпрямитель

Степанов Константин Сергеевич

Работа двухполупериодного мостового выпрямителя

В этой схеме напряжение на выходе
определяется по второму закону Кирхгофа:
В виде мгновенного значения –
u (t)= u (t) - 2u (t),
В виде действующего значения –
U = 2Um/π,
при игнорировании падения напряжения на
диодах в виду их малой величины.
нагр
входа
нагр
Степанов Константин Сергеевич
диода

СХЕМЫ ВЫПРЯМИТЕЛЕЙ

Степанов Константин Сергеевич

Частота пульсаций
f1п = 3 fс
Степанов Константин Сергеевич

СХЕМЫ ВЫПРЯМИТЕЛЕЙ

Степанов Константин Сергеевич

Трехфазная мостовая схема управления

Постоянная составляющая в этой схеме
достаточно велика
m
, тогда Ud 0 =0,955Uл m ,
U 2 U Sin
d0
2
m
где: U2 – действующее значение линейного
напряжения на входе выпрямителя,
m – число фаз выпрямителя.
Uл m - амплитудное значение линейного
напряжения
Амплитуды пульсаций гармоник – малы,
а частота пульсаций их велика
Um1 = 0,055Uл m (частота f1п = 6 fс)
Um2 = 0,013Uл m (частота f2п = 12 fс)
Степанов Константин Сергеевич

СЕТЕВЫЕ ФИЛЬТРЫ

Емкостные (С – фильтры)
Индуктивные (L – фильтры)
LC - фильтры
Степанов Константин Сергеевич

Емкостной (С – фильтр)

Степанов Константин Сергеевич

Емкостной (С – фильтр)

Степанов Константин Сергеевич

Емкостной (С – фильтр)

Степанов Константин Сергеевич

Индуктивный (L – фильтр)

Степанов Константин Сергеевич

Индуктивный (L – фильтр)

Степанов Константин Сергеевич

Степанов Константин Сергеевич

Биполярные транзисторы
Биполярным транзистором
называется полупроводниковый
прибор с двумя p-n-переходами.
Он имеет трехслойную структуру
n-p-n или p-n-p-типа
33
Степанов Константин Сергеевич

Структура и обозначение
биполярного транзистора
34
Степанов Константин Сергеевич

Степанов Константин Сергеевич

Структура биполярного транзистора

Степанов Константин Сергеевич

Режимы работы транзистора
Различают следующие режимы транзистора:
1)режим отсечки токов (режим закрытого
транзистора), когда оба перехода смещены в
обратном направлении (закрыты); 2)режим
насыщения (режим открытого транзистора) ,
когда оба перехода смещены в прямом
направлении, токи в транзисторах максимальны и
не зависят от его параметров: 3)активный режим,
когда эмиттерный переход смещен в прямом
направлении, коллекторный - в обратном.
37
Степанов Константин Сергеевич

Схема с общей базой

Степанов Константин Сергеевич

Схема с общей базой и её ВАХ
39
Степанов Константин Сергеевич

Схема с общим эмиттером (ОЭ)

Степанов Константин Сергеевич

Схема с общим коллектором (ОК)

Степанов Константин Сергеевич

Схема с ОЭ(а), её ВАХ и схема с ОК(б)

Степанов Константин Сергеевич

Характеристики и эквивалентные схемы транзисторов

Степанов Константин Сергеевич

Схема с общим эмиттером

Степанов Константин Сергеевич

Осциллограммы на входе и выходе усилителя с ОЭ

Степанов Константин Сергеевич

Схема с общим эмиттером

Степанов Константин Сергеевич

Степанов Константин Сергеевич

Тиристоры

Многослойные структуры с тремя p-nпереходами называют тиристорами.
Тиристоры с двумя выводами
(двухэлектродные) называются
динисторами,
с тремя (трехэлектродные) -
тринисторами.
Степанов Константин Сергеевич

Свойства тиристоров

Основным свойством является
способность находиться в двух
состояниях устойчивого равновесия:
максимально открытом, и
максимально закрытом.
Степанов Константин Сергеевич

Свойства тиристоров

Включать тиристоры можно
импульсами малой мощности по цепи
управления.
Выключать – сменой полярности
напряжения силовой цепи или
уменьшением анодного тока до
значения ниже тока удержания.
Степанов Константин Сергеевич

Применение тиристоров

По этой причине тиристоры относят к
классу переключающих
полупроводниковых приборов, главным
применением которых является
бесконтактная коммутация
электрических цепей.
Степанов Константин Сергеевич

Структура, обозначение и ВАХ динистора.

Степанов Константин Сергеевич

При прямом включении динистора источник
питания En смещает p-n-переходы П1 и П3 в
прямом направлении, а П2 - в обратном,
динистор находится в закрытом состоянии и
все приложенное к нему напряжение падает
на переходе П2. Ток прибора определяется
током утечки Iут, значение которого
находится в пределах от сотых долей
микроампера до нескольких микроампер
(участок ОА). Дифференциальное
u
сопротивление динистора Rдиф = l на участке
ОА положительно и достаточно велико. Его
значение может достигать нескольких сотен
мегаом. На участке АБ Rдиф <0 Условное
обозначение динистора показано на рис.б.
Степанов Константин Сергеевич

Структура тиристора

Степанов Константин Сергеевич

Обозначение тиристора

Степанов Константин Сергеевич

Степанов Константин Сергеевич

Степанов Константин Сергеевич

Степанов Константин Сергеевич

Условия включения тиристора

1. Прямое напряжение на тиристоре
(анод + , катод -).
2. Импульс управления, открывающий
тиристор, должен быть достаточной
мощности.
3. Сопротивление нагрузки должно
быть меньше критического
(Rкр = Uмакс/Iуд).
Степанов Константин Сергеевич

Полевые транзисторы
60
Степанов Константин Сергеевич

Полевые (униполярные) транзисторы

Степанов Константин Сергеевич

Полевой транзистор с изолированным затвором

Степанов Константин Сергеевич

ОБРАТНЫЕ СВЯЗИ Подготовлено Степановым К.С.

Степанов Константин Сергеевич

ОБРАТНЫЕ СВЯЗИ

Воздействие причины на следствие,
вызвавшее эту причину, называется
обратной связью.
Обратная связь, усиливающая

положительной (ПОС).
Обратная связь, ослабляющая
воздействие следствия, называется
отрицательной (ООС).
Степанов Константин Сергеевич

ОБРАТНЫЕ СВЯЗИ структурная схема ОС

Степанов Константин Сергеевич

Последовательная ОС по току

Степанов Константин Сергеевич

Последовательная ОС по току

Коэффициент передачи усилителя в
U вых
направлении стрелки
K
U вх
Коэффициент передачи обратной
связи в направлении стрелки
U ос
U вых
Степанов Константин Сергеевич

Последовательная ОС по току

β показывает какая часть выходного
напряжения передаётся на вход.
Обычно
1
U вх U вх U ос U вх U вых
U вых KU вх K (U вх U вых)
Степанов Константин Сергеевич

Последовательная ОС по току

Следовательно
Тогда
K
K
1 K
U вых
K
K KK
U вх
U ос
U вых Z н
K
1

K
1 K
Степанов Константин Сергеевич

Последовательная ОС по току

Входное сопротивление
Так как в схеме
Тогда
Z вх (1 K) Z вх
U ос (I вых I вх)
U вх U вх (I вых I вх)
Z вх Z вх (1 K I)
Z вых (1 K в)
Z вых
Степанов Константин Сергеевич

Последовательная ОС по току

Где KI - коэффициент усиления тока. Он
должен быть меньше нуля, т.е. усилитель
должен быть инвертирующий.
K в Zвх * Kв /(Rг Zвх)
При ООС K в <0
Применяется тогда, когда нужно иметь
большое Zвых. Тогда такой усилитель
эквивалентен генератору тока. При
глубокой ООС справедливо
>>Zвых
Z вых
Степанов Константин Сергеевич

Степанов Константин Сергеевич

Последовательная ОС по напряжению

Последовательная ОС
напряжению
по
Увеличивает входное и уменьшает
выходное сопротивление
Z вых
Z вых
1 K в
Z вх
Rг Z вх
где Кв – коэффициент передачи
усилителя в режиме холостого хода
Эмиттерный повторитель – яркий
пример Последовательной ООС по
напряжению
Степанов Константин Сергеевич

Параллельная ООС по току

Параллельная
Степанов Константин Сергеевич
ООС по току

Параллельная ООС понапряжению

Степанов Константин Сергеевич

ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ Подготовлено Степановым К.С.

Степанов Константин Сергеевич

ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ

Логические элементы - устройства,
предназначенные для обработки
информации в цифровой форме
(последовательности сигналов высокого -
«1» и низкого - «0» уровней в двоичной
логике, последовательность "0", "1" и "2" в
троичной логике, последовательности "0",
"1", "2", "3", "4", "5", "6", "7", "8"и "9" в
Степанов Константин Сергеевич

ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ

Физически, логические элементы
могут быть выполнены
механическими,
электромеханическими (на
электромагнитных реле),
электронными (на диодах и
транзисторах), пневматическими,
гидравлическими, оптическими и др.
Степанов Константин Сергеевич

ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ

После доказательства в 1946 г. теоремы
Джона фон Неймана о экономичности
показательных позиционных систем
счисления стало известно о
преимуществах двоичной и троичной
систем счисления по сравнению с
десятичной системой счисления.
Степанов Константин Сергеевич

ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ

Двоичность и троичность позволяет
значительно сократить количество
операций и элементов, выполняющих
эту обработку, по сравнению с
десятичными логическими элементами.
Логические элементы выполняют
логическую функцию (операцию) с
входными сигналами (операндами,
данными).
Степанов Константин Сергеевич

ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ

Логические операции с одним
операндом называются унарными, с
двумя - бинарными, с тремя -
тернарными (триарными,
тринарными) и т. д.
Степанов Константин Сергеевич

ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ

Из возможных унарных операций с
унарным выходом интерес для
реализации представляют операции
отрицания и повторения, причём,
операция отрицания имеет большую
значимость, чем операция повторения, Степанов Константин СергеевичA Мнемоническое правило Для эквивалентности с любым

На выходе будет:

действует четное количество «1»,

действует нечетное количество «1»,
Степанов Константин Сергеевич

Сложение по модулю 2 (2Исключающее_ИЛИ, неравнозначность). Инверсия равнозначности.

A
Степанов Константин Сергеевич
0
0
1
1
B
0
1
0
1
f(AB)
0
1
1
0

Мнемоническое правило

Для суммы по модулю 2 с любым
количеством входов звучит так:
На выходе будет:
"1" тогда и только тогда, когда на входа
действует нечётное количество «1»,
"0" тогда и только тогда, когда на входа
действует чётное количество «1»,
Степанов Константин Сергеевич

Благодарю за внимание
Степанов Константин Сергеевич

Содержание.1.
2.
3.
4.
5.
6.
7.
8.
9.
Определение.
Область применения.
Принцип работы.
Разновидности устройств и их обозначение.
ВАХ.
Коэффициент выпрямления.
Мостовые схемы включения диодов.
Диоды Шотки.

Определение.

Выпрямительный диод - это
полупроводниковый прибор с
одним p-n переходом и с двумя
электродами, который служит
для преобразования
переменного тока в
постоянный.

Область применения.

Выпрямительные диоды применяются в
цепях управления, коммутации, в
ограничительных и развязывающих цепях, в
источниках питания для преобразования
(выпрямления) переменного напряжения в
постоянное, в схемах умножения напряжения и
преобразователях постоянного напряжения,
где не предъявляются высокие требования к
частотным и временным параметрам сигналов.

Принцип работы выпрямительного диода

Принцип работы этого устройства основывается на
особенностях p-n перехода. Анод присоединён к p
слою, катод к n слою. Возле переходов двух
полупроводников расположен слой, в котором отсутствуют
носители заряда. Это запирающий слой. Его
сопротивление велико.
При воздействии на слой определенного внешнего
переменного напряжения, толщина его становится
меньше, а впоследствии и вообще исчезнет.
Возрастающий при этом ток называют прямым. Он
проходит от анода к катоду. Если внешнее переменное
напряжение будет иметь другую полярность, то
запирающий слой будет больше, сопротивление возрастет.

Разновидности устройств и их обозначение.

По конструкции различают приборы двух видов: точечные и плоскостные.
В промышленности наиболее распространены кремниевые (обозначение -
Si) и германиевые (обозначение - Ge). У первых рабочая температура выше.
Преимущество вторых - малое падение напряжения при прямом токе.
Принцип обозначений диодов – это буквенно-цифровой код:
- Первый элемент – обозначение материала из которого он выполнен;
- Второй определяет подкласс;
- Третий обозначает рабочие возможности;
- Четвертый является порядковым номером разработки;
- Пятый – обозначение разбраковки по параметрам.

Параметры выпрямительных диодов.

Частотный диапазон выпрямительных диодов
невелик. При преобразовании промышленного
переменного тока рабочая частота составляет 50 Гц,
предельная частота выпрямительных диодов не
превышает 20 кГц.
По максимально допустимому среднему прямому
току диоды делятся на три группы: диоды малой
мощности (Iпр.ср. ≤ 0,3 А), диоды средней
мощности (0,3 А < Iпр.ср. < 10 А) и мощные
(силовые) диоды (Iпр.ср. ≥ 10 А). Диоды средней и
большой мощности требуют отвода тепла, поэтому
они имеют конструктивные элементы для установки
на радиатор.

Параметры выпрямительных диодов.

В состав параметров диодов входят
диапазон температур окружающей среды (для
кремниевых диодов обычно от −60 до +125 °С)
и максимальная температура корпуса.
Среди выпрямительных диодов следует особо
выделить диоды Шотки, создаваемые на базе
контакта металл-полупроводник и
отличающиеся более высокой рабочей
частотой (для 1 МГц и более), низким прямым
падением напряжения (менее 0,6 В).

Вольт-амперная характеристика

Вольт-амперную характеристику (ВАХ)
выпрямительного диода можно
представить графически. Из графика
видно, что ВАХ устройства нелинейная.
В начальном квадранте Вольт-амперной
характеристики ее прямая ветвь
отражает наибольшую проводимость
устройства, когда к нему приложена
прямая разность потенциалов. Обратная
ветвь (третий квадрант) ВАХ отражает
ситуацию низкой проводимости. Это
происходит при обратной разности
потенциалов.
Реальные Вольт-амперные характеристики
подвластны температуре. С
повышением температуры прямая
разность потенциалов уменьшается.

Коэффициент выпрямления

Коэффициент выпрямления можно рассчитать.
Он будет равен отношению прямого тока
прибора к обратному. Такой расчет приемлем
для идеального устройства. Значение
коэффициента выпрямления может достигать
нескольких сотен тысяч.
Чем он больше, тем лучше
выпрямитель делает свою
работу.

Мостовые схемы включения диодов.

Дио́дный мо́ст - электрическая схема,
предназначенная для преобразования
(«выпрямления») переменного
тока в пульсирующий. Такое выпрямление
называется двухполупериодным.
Выделим два варианта включения мостовых
схем:
1. Однофазную
2. Трехфазную.

Однофазная мостовая схема.

На вход схемы подается переменное напряжение (для простоты будем
рассматривать синусоидальное), в каждый из полупериодов ток
проходит через два диода, два других диода закрыты
Выпрямление положительной полуволны
Выпрямление отрицательной полуволны

результате такого преобразования на выходе мостовой схемы
получается пульсирующее напряжение вдвое большее частоты
напряжения на входе.
В
а) исходное напряжение (напряжение на входе), б)
однополупериодное выпрямление, с) двухполупериодное
выпрямление

Трехфазная мостовая схема.

В схеме трехфазного выпрямительного моста в результате
получается напряжение на выходе с меньшими пульсациями, чем
в однофазном выпрямителе.

Диоды Шотки

Диоды Шоттки получают, используя переход металл-полупроводник.
При этом применяют подложки из низкоомного n-кремния (или
карбида кремния) с высокоомным тонким эпитаксиальным слоем того
же полупроводника.
УГО и структура диода Шоттки:
1 –низкоомный исходный кристалл кремния
2 – эпитаксиальный слой высокоомного

‖‖‖
Кремния
‖‖‖
3 – область объемного заряд
4 – металлический контакт

Слайд 1

Слайд 2

Проводники, диэлектрики и полупроводники. Собственная (электронно-дырочная) электрическая проводимость. Примесная (электронно-дырочная) электрическая проводимость. Электронно-дырочный переход. Контакт двух полупроводников с р- и n- проводимостью. P- n переход и его свойство. Строение полупроводникового диода. Вольт - амперная характеристика полупроводникового диода. * * * * Применение полупроводников (выпрямление переменного тока)*. Однополупериодное выпрямление переменного тока.* Двухполупериодное выпрямление переменного тока.* Светодиоды*.

Слайд 3

В данную версию презентации включены 25 слайдов из 40, просмотр некоторых из них ограничен. Презентация носит демонстрационный характер. Полная версии презентации содержит практически весь материал по теме «Полупроводники», а также дополнительный материал, который следует более детально изучить в профильном физико-математическом классе. Полную версию презентации можно скачать на сайте автора LSLSm.narod.ru.

Слайд 4

Непроводники (диэлектрики)

Проводники

Прежде всего поясним само понятие – полупроводник.

По способности проводить электрические заряды вещества условно делятся на проводники и непроводники электричества.

Тела и вещества, в которых можно создавать электрический ток, называют проводниками.

Тела и вещества, в которых нельзя создавать электрический ток, называют непроводниками тока.

Металлы, уголь, кислоты, растворы солей, щелочи, живые организмы и многие другие тела и вещества.

Воздух, стекло, парафин, слюда, лаки, фарфор, резина, пластмассы, различные смолы, маслянистые жидкости, сухое дерево, сухая ткань, бумага и другие вещества.

Полупроводники по электропроводности занимают промежуточное место между проводниками и непроводниками.

Слайд 5

Бор B, углерод C, кремний Si фосфор Р, сера S, германий Ge, мышьяк As, селен Se, олово Sn, сурьма Sb, теллур Te и йод I.

Полупроводники - это ряд элементов таблицы Менделеева, большинство минералов, различные окислы, сульфиды, теллуриды и другие химические соединения.

Слайд 6

Атом состоит из положительно заряженного ядра и отрицательно заряженных электронов, вращающихся вокруг ядра по стабильным орбитам.

Электронная оболочка атома германия состоит из 32 электронов, четыре из которых вращаются по его внешней орбите.

Электронная оболочка атома

Ядро атома

Сколько электронов у атома германия?

Четыре внешних электрона, называемые валентными, существенным образом определяют атома германия. Атом германия стремится приобрести устойчивую структуру, присущую атомам инертных газов и отличающуюся тем, что на внешней их орбите находится всегда строго определенное число электронов (например, 2, 8, 18 и т. д.).Таким образом, для приобретения подобной структуры атому германия потребовалось бы принять на внешнюю орбиту еще четыре электрона.

Слайд 7

Слайд 8

При повышении температуры некоторая часть валентных электронов может получить энергию, достаточную для разрыва ковалентных связей. Тогда в кристалле возникнут свободные электроны (электроны проводимости). Одновременно в местах разрыва связей образуются вакансии, которые не заняты электронами. Эти вакансии получили название дырок.

ρмет = f(Т) ρполуп = f(Т)

Повысим температуру полупроводника.

Валентные электроны в кристалле германия связаны с атомами гораздо сильнее, чем в металлах; поэтому концентрация электронов проводимости при комнатной температуре в полупроводниках на много порядков меньше, чем у металлов. Вблизи абсолютного нуля температуры в кристалле германия все электроны заняты в образовании связей. Такой кристалл электрического тока не проводит.

При увеличении температуры полупроводника в единицу времени образуется большее количество электронно-дырочных пар.

Зависимость удельного сопротивления ρ металла от абсолютной температуры T

Собственная электрическая проводимость

Слайд 9

Электронно-дырочный механизм проводимости проявляется только у чистых (т. е. без примесей) полупроводников и поэтому называется собственной электрической проводимостью.

Примесная (электронно-дырочная) электрическая проводимость.

Проводимость полупроводников при наличии примесей называется примесной проводимостью.

Примесная (электронная) электрическая проводимость.

Примесная (дырочная) электрическая проводимость.

Изменяя концентрацию примесей, можно значительно увеличивать число носителей зарядов того или иного знака и создавать полупроводники с преимущественной концентрацией либо отрицательно, либо положительно заряженных носителей.

Примесными центрами могут быть: атомы или ионы химических элементов, внедренные в решетку полупроводника; избыточные атомы или ионы, внедренные в междоузлия решетки; различного рода другие дефекты и искажения в кристаллической решетке: пустые узлы, трещины, сдвиги, возникающие при деформациях кристаллов, и др.

Слайд 10

Электронная проводимость возникает, когда в кристалл германия с четырехвалентными атомами введены пятивалентные атомы (например, атомы мышьяка, As).

Дальнейшее содержание слайда в полной версии презентации.

Слайд 11

Слайд 12

Слайд 14

Слайд 15

Слайд 16

Способность n–p-перехода пропускать ток практически только в одном направлении используется в приборах, которые называются полупроводниковыми диодами. Полупроводниковые диоды изготавливают из кристаллов кремния или германия. При их изготовлении в кристалл c каким-либо типом проводимости вплавляют примесь, обеспечивающую другой тип проводимости.

Изображают полупроводниковые диоды на электрических схемах в виде треугольника и отрезка, проведенного через одну из его вершин параллельно противолежащей стороне. В зависимости от назначения диода его обозначение может содержать дополнительные символы. В любом случае острая вершина треугольника указывает на направление протекания прямого тока через диод. Треугольник соответствует р-области и называется иногда анодом, или эмиттером, а прямолинейный отрезок - n-области и называется катодом, или базой.

База Б Эмиттер Э

Слайд 17

Слайд 18

По конструкции полупроводниковые диоды могут быть плоскостными или точечными.

Как правило, диоды изготавливают из кристалла германия или кремния, с проводимостью n-типа. В одну из поверхностей кристалла вплавляют каплю индия. Вследствие диффузии атомов индия в глубь второго кристалла, в нём образуется область p-типа. Остальная часть кристалла по-прежнему имеет проводимость n-типа. Между ними и возникает p-n - переход. Для предотвращения воздействия влаги и света, а также для прочности кристалл заключают в корпус, снабжая контактами. Германиевые и кремниевые диоды могут работать в разных интервалах температур и с токами различной силы и напряжения.