Чем отличается покушение от приготовления. Open Library - открытая библиотека учебной информации


Дискретность КА-модели по пространству является преимуществом с точки зрения математики и вычислительных процедур. Но с точки зрения практических приложений это является недостатком. Порой в фокусе исследования оказываются изменения ширины проема, коридора в пределах 5-15 см на объекте. В силу большего размера ячейки, КА-модели являются нечувствительными к таким изменениям линейных размеров объекта. Возникают проблемы с «расстановкой» мебели в таком дискретном пространстве (например, это актуально для детского сада, где размеры мебели в большинстве случаев не оказываются кратными размеру ячейки, при этом площади помещений весьма ограничены). Также в КА-моделях затруднительным является задание разных размеров и форм частицам.

Кроме того, в дискретной модели движение частицы может осуществляться только в одном из четырех направлениях, так как поле разделено на ячейки.

Минусом непрерывного подхода является то, что он основан на том, что движение людей описывается при помощи дифференциальных уравнений. Довольно сложным является определение правых частей этих уравнений .

Помимо этого существуют и положительные стороны этих моделей. Дискретная модель позволяет воспроизводить различные явления физического аспекта движения людей: слияние, переформирование (растекание, уплотнение), неодновременность слияния потоков, образование и рассасывание скоплений, обтекание поворотов, движение в помещениях с развитой внутренней планировкой, противотоки и пересекающиеся потоки. Предусмотрена возможность учета изменения видимости, информированности людей с планировкой здания, заблаговременного обхода препятствия, использование различными стратегиями движения (кратчайшего пути и кратчайшего времени) . А непрерывные модели позволяют учитывать массу и скорость отдельного человека (то есть его физические параметры). И в этой модели нет никаких ограничений на направление и длину шага .

Содержание задач, связанных с расчетом эвакуации, накладывает определенные требования к математическому аппарату, который следует использовать для моделирования процесса эвакуации. В последнее время частым явлением стали расчетные случаи, включающие помещения с развитой внутренней инфраструктурой (лекционные и зрительные залы, учебные классы, торговые залы и т.п.), важен учет уникальных физических параметров (включая возраст).

Объединение преимуществ обеих моделей позволило перейти на новую ступень в изучении движения людского потока. Появившаяся новая модель носит название полевой дискретно-непрерывной модели эвакуации «SigMA.DC» (Stochastic field Movement of Artificially People Intelligent discrete-continuous model - стохастическая полевая непрерывно-дискретная модель движения людей с элементами искусственного интеллекта).

Эта модель учитывает зависимость скорости человека от плотности, возраста, эмоционального состояния, группы мобильности. Она является непрерывной по пространству в выбранном направлении, но предполагается лишь конечное число направлений, куда может сдвинуться человек из текущей позиции .

В таблице 1 сведены наиболее значимые, по мнению многих исследователей, критерии для выбора математической модели, а также сравнительный анализ трех моделей из Методики расчета пожарного риска (Приложение к Приказу МЧС России N382 от 30.06.2009 ) и полевой модели эвакуации SigMA.DC. Приведенный список возник исходя из необходимости наиболее близко к реальному воспроизводить сценарии эвакуации из научных и образовательных учреждений со свойственной им спецификой: движение людей в помещениях с развитой инфраструктурой, различные роли (последовательность предписанных действий) отдельных эвакуирующихся, уникальные физические параметры (включая возраст), различный уровень информированности о правилах пожаробезопасности и планировки зданий, изменяющийся уровень видимости. Так же интересовал вопрос расширяемости модели для интеграции с моделями развития опасных факторов пожара.

Таблица 1 - Сравнительный анализ моделей упрощенной аналитической, индивидуально-поточной, имитационно-стахостической и полевой - SigMA.DC моделей эвакуации.

Критерии

Переформирование потока (растекание, уплотнение)

Слияние потоков

Неодновременность слияния

Расчленение

Образование и рассасывание скоплений

Учет неоднородности людского потока (вариабельность физического и эмоционального состояния)

Движение в помещении с развитой внутренней планировкой

Движение по участкам «неограниченной» ширины

Учет особенностей выбора людьми маршрутов эвакуации

Учет индивидуальных сценариев эвакуации (выполнение инструкций, задание ролей)

Учет противотоков и пересекающихся потоков

Учет условий видимости

Анализ данных из таблицы показывает, что подавляющее преимущество имеет полевая модель SigMA.DC.

Именно эта модель и является объектом изучения данной работы.

ДИСКРЕТНЫЕ МОДЕЛИ, модели, переменные и параметры которых являются дискретными величинами, т. е. величинами, принимающими конечное или счётное число значений; в задачах, связанных с такими моделями, множество допустимых решений также дискретно. При построении и анализе дискретных моделей используются математические методы дискретной математики, алгебраические и другие известные математические методы, а иногда требуется разработка новых.

Дискретные модели возникают в связи со многими задачами в экономике, управлении, технике и других прикладных областях. Задачи дискретных моделей, как и алгоритмы их решения, носят, как правило, комбинаторный характер, что обусловлено конечностью множества возможных вариантов решений. Среди разработанных дискретных моделей можно выделить следующие основные классы: дискретные модели транспортного типа и планирования перевозок, сетевые и потоковые дискретные модели, дискретные модели управления запасами, дискретные модели размещения, дискретные модели теории расписаний, дискретные модели логического проектирования, дискретные модели распределения ресурсов, дискретные модели формирования производственных систем, дискретные модели ранжирования и кластеризации. В качестве отдельных классов дискретных моделей рассматриваются стохастические и динамические модели. Большое внимание уделяется разработке дискретных экономико-математических моделей.

При исследовании дискретных моделей часто рассматриваются дискретные экстремальные задачи, нерегулярные задачи различных типов, задачи с разрывными целевыми функциями, многоэкстремальные задачи, задачи теории графов, задачи о покрытиях.

Методы и алгоритмы решения дискретных задач обычно носят комбинаторный характер. Основная идея этих методов состоит в выделении и отсеве (отбрасывании) подмножеств допустимых решений, заведомо не содержащих оптимальных. Именно это составляет основу многих используемых в дискретных моделях алгоритмов. Наиболее часто применяются метод последовательного анализа вариантов, метод ветвей и границ, метод динамического программирования, метод последовательных расчётов, аппроксимационно-комбинаторный метод. Многие современные версии алгоритмов являются комбинированными, в рамках которых применяются элементы нескольких алгоритмов.

Лит.: Лихтенштейн В. Е. Модели дискретного программирования. М., 1971; Вагнер Г. Основы исследований операций: В 3 т. М., 1972-1973; Пропой А. И. Элементы теории оптимальных дискретных процессов. М., 1973; Финкельштейн Ю. Ю. Приближенные методы и прикладные задачи дискретного программирования. М., 1976; Моисеев Н. Н. Математические задачи системного анализа. М., 1981; Комбинаторные методы и алгоритмы решения задач дискретной оптимизации большой размерности. М., 2000; Сигал И. Х., Иванова А. П. Введение в прикладное дискретное программирование: Модели и вычислительные алгоритмы. М., 2002.

Отображения в пространстве.

Трехмерное вращение.

Сдвиг.

Основы преобразований.

Трехмерное изменение масштаба.

Данное преобразование производит частное изменение масштаба. Общее изменение масштаба получается за счет использования четвертого диагонального элемента.

Не диагональные элементы левой верхней подматрицы 3*3 в общем матричном преобразование размером 4*4 осуществляется сдвиг в трех измерениях, то есть:

В предыдущем случае было показано, что матрица 3*3 обеспечивает комбинацию операций измерения масштаба и сдвига. Однако, если определенная матрица 3*3 = 1, то имеет место чистое вращение около начала координат.

Рассмотрим несколько частных случаев вращения.

При вращение вокруг оси х размеры вдоль оси х не изменяются, таким образом матрица преобразований будет иметь нули в первой строке и столбце, за исключением единицы на главной диагонали. И будет иметь вид:

Угол Ө - угол вращения вокруг оси х;

Вращение предполагается положительным по часовой стрелке, если смотреть с начала координат вдоль оси вращения.

Для вращения на угол φ около оси Y нули ставят во второй стороне и столбце матрицы преобразования за исключением единицы на главной диагонали.

Матрица имеет вид:

Аналогично матрица преобразований для вращения на угол ψ вокруг оси Z:

Так как вращение описывается умножением матрицы, то трехмерное вращение не коммутативное, то есть порядок умножения будет влиять на конечный результат.

Иногда требуется выполнить зеркальное отображение трехмерного изображения.

Рассмотрим частный случай отображения. Матрица преобразования относительно плоскости XYимеет вид:

И отображение YZ или отображение XZприотображение относительно других плоскостей можно получить путем комбинации вращения и отображения.

Для отображения yz:

Для отображения xz:

Тв.модели

При каркасном моделировании хотя оно и является объемным, мы не учитываем, что является телом, а что внутренностью.

Поэтому появляется термин – твердотельная модель.

Термин твердотельная модель говорит о том, что помимо свойств описания геометрии (очерков, каркасов) существуют признаки или свойства, разделяющие пространства на свободное и на сам геометрический объект.

В связи с тем, что описание свойства твердотельности математической модели может быть многообразными. Приведем только некоторые способы описания твердотельных моделей.



Принцип построения дискретной модели заключается в том, что объект делится на элементарнее подпространства. Данному элементарному подпространству присваивается индекс, определяющий принадлежность или непринадлежность к телу.

Преимущества:

1. Разработан математический аппарат на основе булевой алгебры и математической логики.

2. Простота задания геометрического объекта.

Недостатки:

1. Геометрический объект задается дискретно, возникает вопрос математической модели о точности задания геометрического объекта по гладкости, по возможности построения нормали к геометрическому объекту.

2. Для данной модели существуют проблемы в уравнении и масштабировании геометрического объекта.

Эффект масштабирования - нельзя ни растянуть ни сжать, делаем от и до.