Прогнозирование офп. Общие сведения о методах прогнозирования офп в помещениях


Математические модели развития пожара в помещении описывают в самом общем виде изменения параметров состояния среды, ограждающих конструкций и элементов оборудования с течением времени. Уравнения, математических моделей пожара в помещении базируется на фундаментальных законах физики: законах сохранения массы, энергии, количества движения. Эти уравнения отражают всю совокупность взаимосвязанных и взаимообусловленных процессов, присущих пожару – тепловыделение в результате горения, дымовыделение и изменение оптических свойств газовой среды, выделение и распространение токсичных продуктов горения с окружающей средой и со смежными помещениями, теплообмен и нагревание ограждающих конструкций и др. Интегральный метод моделирования основан на моделировании пожара в помещении на уровне усреднённых характеристик (среднеобъёмных параметров, которыми характеризуются условия в объёме пространства: температура, давление, состав газовой среды и т.д. для любого момента времени). Это наиболее простая в математическом отношении модель пожара. Она представлена системой обыкновенных дифференциальных уравнений. Искомыми функциями выступают среднеобъемные параметры газовой среды в помещении, а независимой переменной является время. Также бывают дифференциальные и зонные модели.

2. Прогнозирование опасных факторов пожара в помещении на основе зонной математической модели.

Зонный метод расчета динамики ОФП основан на фундаментальных законах природы – законах сохранения массы, импульса и энергии. Газовая среда помещений является открытой термодинамической системой, обменивающейся массой и энергией с окружающей средой через открытые проемы в ограждающих конструкциях помещения. Газовая среда является многофазной, т.к. состоит из смеси газов (кислород, азот, продукты горения и газификация горючего материала, газообразное огнетушащие вещество) и мелкодисперсных частиц (твердых или жидких) дыма и огнетушащих веществ. В зонной математической модели газовый объем помещения разбивается на характерные зоны, в которых для описания тепломассобмена используются соответствующие уравнения законов сохранения. Размеры и количество зон выбирается таким образом, что бы в пределах каждой из них неоднородность температурных и других полей параметров газовой среды были возможно минимальными, или из каких-то других предположений, определяемых задачами исследования и расположением горючего материала. Наиболее распространенной является трехзонная модель, в которой объем помещения разбит на следующие зоны: конвективная колонка над очагом пожара, припотолочный слой нагретого газа и зона холодного воздуха. В результате расчета по зонной модели находятся зависимости от времени следующих параметров тепломассообмена: среднеобъемных значений температуры, давления, массовых концентраций кислорода, азота, огнетушащего газа и продуктов горения, а также оптической плотности дыма и дальности видимости в нагретом задымленном припотолочном слое в помещении; нижнюю границу нагретого задымленного припотолочного слоя; распределение по высоте колонки массового расхода, осредненных по поперечному сечению колонки величин температуры и эффективной степени черноты газовой смеси; массовых расходов истечения газов наружу и притока наружного воздуха внутрь через открытые проемы; тепловых потоков, отводящих в потолок, стены и пол, а также излучаемых через проемы; температуры (температурных полей) ограждающих конструкций.

3. Прогнозирование опасных факторов пожара в помещении на основе дифференциальной математической модели. Дифференциальная математическая модель позволяет рассчитать для любого момента развития пожара значения всех локальных параметров состояния во всех точках пространства внутри помещения. Дифференциальная модель расчета тепломассообмена при пожаре состоит из системы основных дифференциальных уравнений законов сохранения импульса, массы и энергии. К основным уравнениям математической модели относятся: уравнение неразрывности газовой смеси оно является математическим выражением закона сохранения массы газовой смеси, уравнение энергии является математическим выражением закона сохранения и превращения энергии, уравнение неразрывности для компонента газовой смеси, уравнение состояния смеси идеальных газов, уравнения теплофизических параметров смеси газов учитывает химический состав смеси. К дополнительным соотношениям математической модели относятся: расчет процесса прогрева строительных конструкций (материалов стен, перекрытия, пола и колонны), расчет турбулентного тепломассобмена, расчет радиационного тепломассообмена, расчет выгорания горючей нагрузки, т.е. определение величины оставшейся массы жидкого или твердого горючего материала после частичного его выгорания, моделирование горения (моделирование области горения может осуществляться при помощи источников энергии, массы и дыма без учета химической кинетики и термогазодинамических условий в области горения).

4.Расчет критической продолжительности пожара на основе интегральной математической модели. Критическая продолжительность пожара – это время достижения предельно допустимых для человека значений ОФП в зоне пребывания людей. Формула для расчета КПП по температуре: , где Т кр – предельно допустимое значение температуры в рабочей зоне. Для расчета КПП по условию достижения концентрации кислорода в рабочей зоне своего предельно допустимого значения: . Для расчета КПП по условию достижения концентрацией токсичного газа в рабочей зоне своего предельно допустимого значения:.Для расчета КПП по потере видимости:.Эти формулы можно применять лишь для помещений с небольшими открытыми проемами.

В начальной стадии пожара наблюдается специфический режим газообмена. Особенности этого режима заключаются в том, что процесс газообмена идет в одном направлении через все имеющиеся проемы и щели. Поступление воздуха в помещение из окружающей среды в этот период развития пожара совсем отсутствует. Лишь спустя некоторое время, когда средняя температура среды в помещении достигает определенного значения. Процесс газообмена становится двусторонним, т.е. через одни проемы из помещения вытекают нагретые газы, а через другие поступает свежий воздух. Продолжительность начальной стадии пожара, при которой наблюдается «односторонний» газообмен, зависит от размеров проемов.

При условии отсутствия поступление воздуха извне в дифференциальных уравнениях пожара можно отбросить члены, содержащие расход воздуха (G B = 0.).

Кроме того, будем рассматривать негерметичные помещения, в которых среднее давление среды остается практически постоянным, равным давлению наружного воздуха, так что с достаточной точностью можно принять, что:

где r 0 , Т 0 – плотность и температура среды перед началом пожара; r m , Т m – соответственно средние значения плотности и температуры среды в рассматриваемый момент времени; Р m – среднее давление в помещении.

Интервал времени, в течении которого наблюдается односторонний газообмен, является относительно небольшим. Средняя температура и концентрация кислорода в помещении изменяются за этот промежуток времени незначительно. По этой причине можно принять, что величины h, D, R в этой стадии пожара остаются неизменными. Кроме того, примем, что п 1 = п 2 = n 3 = т = 1 и V = const.

С учетом сказанного, уравнения пожара для начальной его стадии в помещении с малой проемностью, принимают следующий вид:

; (2)

, (4)

, (5)

(6)

В дальнейшем принимается еще одно допущение:

с р = с рВ = const. (7)

Для того чтобы получить аналитическое решение этих уравнений, используется прием, заключающийся в следующем. Поскольку рассматривается процесс развития пожара на относительно малом промежутке времени, то можно принять, что отношение теплового потока в ограждении к тепловыделению есть величина постоянная, равна своему среднему значению на этом интервале:

(8)

где Q пож = ψ η Q н;

τ * – время окончания начальной стадии пожара;

φ – коэффициентом теплопотерь.

Из уравнения баланса энергии (3) можно определить расход выталкиваемых газов из помещения.

С учетом уравнений (3) и (8) расход выталкиваемых газов в каждый момент времени определяется по формуле:



(9)

Следовательно, для начальной стадии пожара с учетом условия (1) расход выталкиваемых газов определяем по формуле:

(10)

Таким образом, уравнения пожара для начальной его стадии в помещении примут вид:

, (11)

, (12)

, (13)

. (14)

Эти уравнения представляют собой частный случай основной (неупрощенной) системы уравнений пожара.

Зависимость среднеобъемной плотности от времени можно описать следующим выражением:

, (15)

тогда процесс нарастания средней температуры среды в помещении описывается формулой:

, (16)

где

где b Г – ширина фронта пламени, м;

,

где – теплота сгорания, Дж·кг -1 ;

с p – теплоемкость газовой среды в помещении, Дж∙кг -1 ·K -1 (1,01);

ρ 0 , Т 0 – начальное значение плотности (кг·м -3) и температуры (К) соответственно;

V – свободный объем помещения, м 3 ;

Из дифференциального уравнения (12), описывающего процесс снижения парциальной плотности кислорода в помещении, находим парциальную плотность кислорода в зависимости от времени:

. (17)

где ρ 0 = 0,27 кг·м -3 , ρ 01 / ρ 0 = 0,23.

С использованием дифференциального уравнения (13) определим среднюю парциальную плотность токсичного газа в зависимости от времени по формуле:

, (18)

где – пороговая плотность, кг·м -3 .

Наконец рассмотрим дифференциальное уравнение (14), описывающее изменение критической плотности дыма в помещении. Разделим переменные в этом уравнении и затем, интегрируя с учетом начального условия, получаем формулу для определения оптической концентрации дыма:



, (19)

где .

Значение μ * зависит от свойств горючего материала (ГМ). Например, для древесины при ее горении на открытом воздухе μ * ≤ 5 Нп · м -1 .

Оптическая плотность дыма связана с дальностью видимости следующим соотношением:

.

где l вид – дальность видимости, м.

3 ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1. Используя основные теоретические положения рассчитать согласно варианту исходных данных (таблица 3):

а) парциальную плотность кислорода в зависимости от времени;

б) среднюю парциальную плотность токсичного газа;

в) оптическую концентрацию дыма;

г) оптическую плотность дыма.

2. Занести в таблицу полученные промежуточные и конечные результаты.

3. Подготовить отчет.

1) Краткие теоретические сведения.

2) Исходные данные.

3) Количественные показатели произведенных расчетов.

4) Ответы на контрольные вопросы.

Работа выполняется на листах формата А4, печатным текстом, в виде пояснительной записки содержащей краткую реферативную часть, требуемые расчеты и графики. Оформление работы должно соответствовать общим требованиям, предъявляемым к оформлению работ студентов в университете.

Таблица 3 – Данные по вариантам для выполнения расчета начальной стадии пожара

№ варианта Размер помещения t о, о С Высота рабочей зоны, h , м Горючее вещество Масса, кг Форма поверхности горения (таблица 4) Период развития пожара, мин Ширина фронта пламени, м Площадь горения, F , м 2
20х10х5 1,7 бензин в
15х15х6 ацетон в
10х30х4 1,8 древесина б
20х20х4 2,1 полиэтилен б
40х10х3 1,8 резина б
25х30х5 2,0 турбинное масло в
30х10х5 1,8 лен б
20х20х6 2,5 дизельное топливо в
40х10х5 2,2 хлопок а
30х8х4 1,9 хлопок а
20х10х4 2,3 бензин в
20х20х3 1,8 толуол а
30х6х3 1,7 древесина а
30х10х5 2,4 полиэтилен а
20х10х6 2,0 резина а
25х10х4 1,8 турбинное масло в
30х10х5 2,2 лен а
15х15х4 2,0 дизельное топливо в
30х10х4 2,3 пенопласт а
30х20х5 2,0 хлопок а
30х30х4 1,8 бензин в
40х10х4 2,0 толуол а
25х10х3 2,2 древесина а
25х25х4 2,0 полиэтилен б
30х20х3 2,0 резина а
25х25х4 1,8 турбинное масло в
40х10х5 2,4 лен а
20х20х6 2,0 дизельное топливо в
25х10х4 1,8 пенопласт б
30х20х6 2,2 хлопок а

Таблица 4 – Форма поверхности горения

Таблица 5 – Средняя скорость выгорания, низшая теплота сгорания, дымообразующая способность, удельное потребление газов и линейная скорость распространения пламени веществ и материалов

Вещества и материалы Y F , удельная массовая скорость выгорания, х10 –3 , кг м –2 с –1 Низшая теплота сгорания, Q , кДж·кг –1 Дымообразующая способность, D m , м 2 ·кг –1 Удельное потребление газов, L , кг·кг –1 Линейная скорость распространения пламени, J·10 2 , м/с
Бензин 61,7 0,25 0,45
Ацетон 59,6 0,26 0,44
Дизельное топливо 42,0 0,4
Турбинное масло 0,282 0,5
Толуол 0,388
Древесина 39,3 1,15
Резина 11,2 1,7-2
Пенопласт ПВХ-9 2,8 0,37
Полиэтилен 10,3 0,32
Хлопок 2,4 2,3 4,2
Лен 21,3 33,7 1,83

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Стадии пожара и их характеристики.

2. Процесс горения и основными условиями.

3. Массовая скорость выгорания и от чего зависит.

4. Линейная скорость распространения горения

5. Температура пожара в ограждениях и на открытых пространствах

6. Дым – это.

7. Развитие пожара и периоды

ЛИТЕРАТУРА

1. Кошмаров Ю.А. Прогнозирование опасных факторов пожара в помещении. Учебное пособие. АГПС МВД РФ, М. - 2000.

2. Применение полевого метода математического моделирования пожаров в помещениях. Методические рекомендации. ФГУ ВНИИПО МЧС России, 2003.

3. Пузач С.В. Методы расчета тепломассообмена при пожаре в помещении и их применение при решении практических задач пожаровзрывобезопасности. Монография. - М.: Академия ГПС МЧС России, 2005. - 336 с.

4. Пузач С.В., Смагин А.В., Лебедченко О.С., Абакумов Е.С. Новые представления о расчете необходимого времени эвакуации людей и об эффективности использования портативных фильтрующих самоспасателей при эвакуации на пожарах. Монография. - М.: Академия ГПС МЧС России, 2007. 222 с.

ЛЕКЦИЯ

по дисциплине "Прогнозирование опасных факторов пожара"

Тема №3. «ГАЗООБМЕН ПОМЕЩЕНИИ И ТЕПЛОФИЗИЧЕСКИЕ ФУНКЦИИ, НЕОБХОДИМЫЕ ДЛЯ ОПИСАНИЯ

ЗАМКНУТОГО ПОЖАРА»

План лекции:

Лекция 1,2. ДОПОЛНИТЕЛЬНЫЕ УРАВНЕНИЯ ИНТЕГРАЛЬНОЙ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ПОЖАРА ДЛЯ РАСЧЕТА РАСХОДОВ УХОДЯЩИХ ГАЗОВ И ПОСТУПАЮЩЕГО ЧЕРЕЗ ПРОЕМЫ ВОЗДУХА

1.1. Введение

1.2. Распределение давлений по высоте помещения

1.3 Плоскость равных давлений и режимы работы проема

1.4. Распределение перепадов давлений по высоте помещения

1.5. Формулы для расчета расхода газа, выбрасываемого через прямоугольный проем

1.6. Формулы для расчета расхода воздуха, поступающего через прямоугольный проем

1.7. Влияние ветра на газообмен

Лекция 3,4. УРАВНЕНИЯ ИНТЕГРАЛЬНОЙ МОДЕЛИ ПОЖАРА ДЛЯ РАСЧЕТА ТЕПЛОВОГО ПОТОКА В ОГРАЖДЕНИЯ И СКОРОСТИ ВЫГОРАНИЯ ГОРЮЧИХ МАТЕРИАЛОВ

2.1 Приближенная оценка величины теплового потока в ограждения

2.2 Эмпирические методы расчета теплового потока в ограждения

2.3 Полуэмпирические методы расчета теплового потока в ограждения

2.4 Методы расчета скорости выгорания горючих материалов и скорости тепловыделения

Цели лекции:

1. Учебные

В результате прослушивания материала слушатели должны знать:

Интегральные уравнения для расчета параметров газообмена

Уравнения интегральной модели для определения тепловых потоков к конструкциям помещения при пожаре

Влияний внешних условий на тепло и газообмен при пожаре

Уметь: прогнозировать обстановку на пожаре с учетом теплогазообмена

2. Развивающие: выделять самое главное, самостоятельность и гибкости мышления, развитие познавательного мышления.

Литература

1. Д.М. Рожков Прогнозирование опасных факторов пожара в помещении. – Иркутск 2007. С.89

2. Ю.А.Кошмаров, М.П. Башкирцев Термодинамика и теплопередача в пожарном деле. ВИПТШ МВД СССР, М., 1987 г.

3. Ю.А.Кошмаров Прогнозирование опасных факторов пожара в помещении. – Москва 2000. С.118

4. Ю.А.Кошмаров, В.В. Рубцов, Процессы нарастания опасных факторов пожара в производственных помещениях и расчет критической продолжительности пожара. МИПБ МВД России, М., 1999 г.

ДОПОЛНИТЕЛЬНЫЕ УРАВНЕНИЯ ИНТЕГРАЛЬНОЙ

МАТЕМАТИЧЕСКОЙ МОДЕЛИ ПОЖАРА ДЛЯ РАСЧЕТА

РАСХОДОВ УХОДЯЩИХ ГАЗОВ И ПОСТУПАЮЩЕГО

ЧЕРЕЗ ПРОЕМЫ ВОЗДУХА

Введение

При пожаре происходит газообмен помещения с окружающей средой через проемы различного назначения (окна, двери, технологические отверстия и т.д.).

Побудителем движения газа через проемы является перепад давлений, т.е. разность между давлением внутри помещения и давлением в окружающей атмосфере. Перепад давлений обусловлен тем, что при пожаре плотность газовой среды внутри помещения существенно отличается от плотности наружного воздуха. Кроме того, необходимо учитывать влияние ветра на величину этого перепада. Дело в том, что наружное давление на наветренной стороне здания выше, чем наружное давление на подветренной стороне. Рассмотрим условия, когда ветер отсутствует.


Интегральная модель пожара
Зонная модель пожара

Общие сведения о расчете пожаров. Опасные факторы пожара.

Расчет пожара (прогнозирование опасных факторов) необходим для оценки своевременности эвакуации и разработке мероприятий по ее совершенствованию, при создании и совершенствовании систем сигнализации, оповещения и тушения пожаров, при разработке планов пожаротушения (планирования боевых действий пожарных подразделений при пожаре), для оценки фактических пределов огнестойкости, проведении пожарно-технических экспертиз и других целей.
В развитии пожара в помещении обычно выделяют три стадии:
- начальная стадия - от возникновения локального неконтролируемого очага горения до полного охвата помещения пламенем; при этом средняя температура среды в помещении имеет не высокие значения, но внутри и вокруг зоны горения температура такова, что скорость тепловыделения выше скорости отвода тепла из зоны горения, что обуславливает само ускорение процесса горения;
- стадия полного развития пожара - горят все горючие вещества и материалы, находящиеся в помещении; интенсивность тепловыделения от горящих объектов достигает максимума, что приводит и к быстрому нарастанию температуры среды помещения до максимальных значений;
- стадия затухания пожара - интенсивность процесса горения в помещении снижается из-за расходования находящейся в нём массы горючих материалов или воздействия средств тушения пожара.
Однако в любом случае, как показывает уравнение «стандартного пожара», температура в очаге пожара через 1,125 мин достигает значения 365оС. Поэтому очевидно, что возможное время эвакуации людей из помещений не может превосходить продолжительности начальной стадии пожара.
В начальной стадии развития пожара опасными для человека факторами являются: пламя, высокая температура, интенсивность теплового излучения, токсичные продукты горения, дым, снижение содержания кислорода в воздухе, поскольку при достижении определённых уровней они поражают его организм, особенно при синергическом воздействии.
Исследованиями отечественных и зарубежных учёных установлено, что максимальная температура, кратковременно переносимая человеком в сухой атмосфере, составляет 149 0С, во влажной атмосфере вторую степень ожога вызывало воздействие температуры 55 0С в течение 20с и 70 0С при воздействии в течение 1с; а плотность лучистых тепловых потоков 3500 вт/м2 вызывает практически мгновенно ожоги дыхательных путей и открытых участков кожи; концентрации токсичных веществ в воздухе приводят к летальному исходу: окиси углерода (СО) в 1,0% за 2-3 мин, двуокиси углерода (СО2) в 5% за 5 мин., цианистого водорода (HCN) в 0,005% практически мгновенно; при концентрации хлористого водорода (HCL) 0,01- 0,015% останавливается дыхание; при снижении концентрации кислорода в воздухе с 23% до 16% ухудшаются двигательные функции организма, и мускульная координация нарушается до такой степени, что самостоятельное движение людей становится невозможным, а снижение концентрации кислорода до 9% приводит к смерти через 5 минут.
Совместное действие некоторых факторов усиливает их воздействие на организм человека (синергический эффект). Так токсичность окиси углерода увеличивается при наличии дыма, влажности среды, снижении концентрации кислорода и повышении температуры. Синергетический эффект обнаруживается и при совместном действии двуокиси азота и понижении концентрации кислорода при повышенной температуре, а также при совместном воздействии цианистого водорода и окиси углерода.
Особое воздействие на людей оказывает дым. Дым представляет собой смесь несгоревших частиц углерода с размерами частиц от 0,05 до 5,0 мкм. На этих частицах конденсируются токсичные газы. Поэтому воздействие дыма на человека также имеет, по-видимому, синергический эффект.
В действительности при пожаре выделяется значительно больше токсинов, воздействие которых достаточно хорошо изучено (табл. 1,2). Максимально допустимый уровень опасных (основных) факторов пожара, воздействие которого не приносит вреда человеку (табл.3), нормирован. Вырываясь из помещения, опасные факторы пожара, прежде всего дым, стремительно распространяются по коммуникационным путям здания.

Источники. 1-4, 6 - ГОСТ 12.1.004-91; 5 - ГОСТ 12.3.047-98; 7 - Кошмаров Ю. А. Прогнозирование опасных факторов пожара в помещении: Учеб. пособие. - М.: Академия ГПС МВД РФ, 2000.

Для прогнозирования опасных факторов пожара в настоящее время используются интегральные (прогноз средних значений параметров состояния среды в помещении для любого момента развития пожара), зонные (прогноз размеров характерных пространственных зон, возникающих при пожаре в помещении и средних значений параметров состояния среды в этих зонах для любого момента развития пожара. Примеры зон - припотолочная область, восходящий на очагом горения поток нагретых газов и область незадымленной холодной зоны) и полевые (дифференциальные) модели пожара (прогноз пространственно-временного распределения температур и скоростей газовой среды в помещении, концентраций компонентов среды, давлений и плотностей в любой точке помещения).
Для проведения расчетов, необходимо проанализировать следующие данные:
- объемно-планировочных решений объекта;
- теплофизических характеристик ограждающих конструкций и размещенного на объекте оборудования;
- вида, количества и расположения горючих материалов;
- количества и вероятного расположения людей в здании;
- материальной и социальной значимости объекта;
- систем обнаружения и тушения пожара, противодымной защиты и огнезащиты, системы обеспечения безопасности людей.
При этом учитывается:
- вероятность возникновения пожара;
- возможная динамика развития пожара;
- наличие и характеристики систем противопожарной защиты (СППЗ);
- вероятность и возможные последствия воздействия пожара на людей, конструкцию здания и материальные ценности;
- соответствие объекта и его СППЗ требованиям противопожарных норм.

Далее необходимо обосновать сценарий развития пожара. Формулировка сценария развития пожара включает в себя следующие этапы:
- выбор места расположения первоначального очага пожара и закономерностей его развития;
- задание расчетной области (выбор рассматриваемой при расчете системы помещений, определение учитываемых при расчете элементов внутренней структуры помещений, задание состояния проемов);
- задание параметров окружающей среды и начальных значений параметров внутри помещений.

Интегральная модель пожара

Интегральная математическая модель пожара описывает в самом общем виде процесс изменения во времени состояния газовой среды в помещении.
С позиций термодинамики газовая среда, заполняющая помещение с проемами (окна, двери и т.п.), как объект исследования есть открытая термодинамическая система. Ограждающие конструкции (пол, потолок, стены) и наружный воздух (атмосфера) является внешней средой по отношению в этой термодинамической системе. Эта система взаимодействует с внешней средой путем тепло- и массообмена. В процессе развития пожара через одни проемы выталкивается из помещения нагретые газы, а через другие поступает холодных воздух. Количество вещества, т.е. масса газа в рассматриваемой термодинамической системе, в течении времени изменяется. Поступление холодного воздуха обусловлено работой проталкивания, которую совершает внешняя среда. Термогазодинамическая система в свою очередь совершает работу, выталкивая нагретые газы во внешнюю атмосферу. Эта термодинамическая система взаимодействует также с ограждающими конструкциями путем теплообмена. Кроме того, в эту систему с поверхности горящего материала (т.е. из пламенной зоны) поступает вещество в виде газообразных продуктов горения.
Состояние рассматриваемой термодинамической системы изменяется в результате взаимодействия с окружающей средой. В интегральном методе описания состояния термодинамической системы, коей является газовая среда в помещении, используются «интегральные» параметры состояния - такие, как масса всей газовой среды и ее внутренняя тепловая энергия. Отношение этих двух интегральных параметров позволяет оценивать в среднем степень нагретости газовой среды. В процесс развития пожара, значения указанных интегральных параметров состояния изменяются.

Зонная модель пожара

Зонный метод расчета динамики ОФП основан на фундаментальных законах природы - законах сохранения массы, импульса и энергии. Газовая среда помещений является открытой термодинамической системой, обменивающейся массой и энергией с окружающей средой через открытые проемы в ограждающих конструкциях помещения. Газовая среда является многофазной, т.к. состоит из смеси газов (кислород, азот, продукты горения и газификация горючего материала, газообразное огнетушащие вещество) и мелкодисперсных частиц (твердых или жидких) дыма и огнетушащих веществ.
В зонной математической модели газовый объем помещения разбивается на характерных зоны, в которых для описания тепломассобмена используются соответствующие уравнения законов сохранения. Размеры и количество зон выбирается таким образом, что бы в пределах каждой из них неоднородность температурных и других полей параметров газовой среды были возможно минимальными, или из каких-то других предположений, определяемых задачами исследования и расположением горючего материала.
Наиболее распространенной является трехзонная модель, в которой объем помещения разбит на следующие зоны: конвективная колонка, припотолочный слой и зона холодного воздуха, рис. 1.

Рисунок 1.

В результате расчета по зонной модели находятся зависимости от времени следующих параметров тепломассообмена:
- среднеобъемных значений температуры, давления, массовых концентраций кислорода, азота, огнетушащего газа и продуктов горения, а также оптической плотности дыма и дальности видимости в нагретом задымленном припотолочном слое в помещении;
- нижнюю границу нагретого задымленного припотолочного слоя;
- распределение по высоте колонки массового расхода, осредненных по поперечному сечению колонки величин температуры и эффективной степени черноты газовой смеси;
- массовых расходов истечения газов наружу и притока наружного воздуха внутрь через открытые проемы;
- тепловых потоков, отводящих в потолок, стены и пол, а также излучаемых через проемы;
- температуры (температурных полей) ограждающих конструкций;
Математический аппарат модели изложен в научно-методических пособиях, приведенных в разделе «Литература» настоящего раздела.

Полевой (дифференциальный) метод расчета

Полевой метод является наиболее универсальным из существующих детерминистических методов, поскольку он основан на решении уравнений в частных производных, выражающих фундаментальные законы сохранения в каждой точке расчетной области. С его помощью можно расчитать температуру, скорость, скорость, концентрации компонентов смеси и т.п.в каждой точки расчетной области, см. рис. 2. В связи с этим полевой метод может использоваться:
. для проведения научных исследований в целях выявления закономерностей развития пожара;
. для проведения сравнительных расчетов в целях апробации и совершенствования менее универсальных и зональных и интегральных моделей, проверки обоснованности и их применения;
. Выбора рационального варианта противопожарной защиты конкретных объектов:
. моделирования распространения пожара в помещениях высотой более 6м.

Рис. 2. Расчеты с помощью полевой модели.

В своей основе полевой метод не содержит никаких априорных допущений о структуре течения, и связи с этим принципиально применим для рассмотрения любого сценарий развития пожара.
Вместе с тем, следует отметить, что его использование требует значительных вычислительных ресурсов. Это накладывает ряд ограничений на размеры рассматриваемой системы и снижает возможность проведения многовариантных расчетов. Поэтому, интегральный и зональный методы моделирования также являются важным инструментами в оценке пожарной опасности объектов в тех случаях, когда они обладают достаточной информативностью и сделанные при их формулировке допущения не противоречат картине развития пожара.
Однако, на основе проведенных исследований, можно утверждать, что поскольку априорные допущения зонных моделей могут приводить к существенным ошибкам при оценке пожарной опасности объекта, предпочтительно использовать полевой метод моделирования в следующих случаях:
. для помещений сложной геометрической конфигурации, а также для помещений с большим количеством внутренних преград;
. помещений, в которых один из геометрических размеров гораздо больше остальных;
. помещений, где существует вероятность образования рециркуляционных течений без формирования верхнего прогретого слоя (что является основным допущением классических зонных моделей);
. в иных случаях, когда зонные и интегральные модели являютсяч недостаточно информативными для решения поставленных задач, либо есть основании считать, что развитие пожара может существенно отличаться от априорных допущений зональных и интегральных моделей пожара.

Математический аппарат модели изложен в научно-методических пособиях, приведенных в разделе «Литература» настоящего раздела.

Критерии выбора моделей пожара для расчетов

В соответствии с проектом документа «Методика оценки рисков для общественных зданий» для описания термогазодинамических параметров пожара применяются три основных группы детерминистических моделей: интегральные, зонные (зональные) и полевые.
Выбор конкретной модели расчета времени блокирования путей эвакуации следует осуществлять исходя из следующих предпосылок:
интегральный метод:
 для зданий и сооружений, содержащих развитую систему помещений малого объема простой геометрической конфигурации
 проведении имитационного моделирования для случаев, когда учет стохастического характера пожара является более важным, чем точное и детальное прогнозирование его характеристик;
 для помещений, где характерный размер очага пожара соизмерим с характерным размером помещения;

Зональный метод:
 для помещений и систем помещений простой геометрической конфигурации, линейные размеры которых соизмеримы между собой;
 для помещений большого объема, когда размер очага пожара существенно меньше размеров помещения;
 для рабочих зон, расположенных на разных уровнях в пределах одного помещения (наклонный зрительный зал кинотеатра, антресоли и т.д);

Полевой метод:
- для помещений сложной геометрической конфигурации, а также помещений с большим количеством внутренних преград (атриумы с системой галерей и примыкающих коридоров, многофункциональные центры со сложной системой вертикальных и горизонтальных связей и т.д.);
- для помещений, в которых один из геометрических размеров гораздо больше (меньше) остальных (тоннели, закрытые автостоянки большой площади и.т.д.);
- для иных случаев, когда применимость или информативность зонных и интегральных моделей вызывает сомнение (уникальные сооружения, распространение пожара по фасаду здания, необходимость учета работы систем противопожарной защиты, способных качественно изменить картину пожара, и т.д.).

Характеристика типовой пожарной нагрузки (примеры)

Здания I-II ст. огнест.; мебель+бытовые изделия
Низшая теплота сгорания, кДж/кг 13800,0
Линейная скорость пламени, м/с / Плотность ГЖ,кг/м3 0,0108
Удельная скорость выгорания, кг/м2-с 0,01450
Дымообразующая способность, Нпм2/кг 270,00
Потребление кислорода (О2), кг/кг -1,0300
Выделение газа:
углекислого (СОг), кг/кг 0,20300
угарного (СО), кг/кг 0,00220
хлористого водорода (НС1), кг/кг 0,01400

Здание I-II ст. огнест.; мебель+ткани
Низшая теплота сгорания, кДж/кг 14700,0
Линейная скорость пламени, м/с / Плотность ГЖ, кг/м3. 0,0108
Удельная скорость выгорания, кг/м2с 0,01450
Дымообразуюшая способность, Нпм2/кг. ...82,00
Потребление кислорода (O2), кг/кг -1,4370
Выделение газа:
углекислого (СО2). кг/кг...... 1,28500
угарного (СО), кг/кг 0,00220
хлористого водорода (НС1), кг/кг. 0,00600

Обществ.здания; мебель+линолеум ПВХ (0,9+0,1)
Низшая теплота сгорания, кДж/кг 14000,0
Линейная скорость пламени, м/с / Плотность ГЖ, кг/м3 0,015
Удельная скорость выгорания, кг/м2с.-. 0,01370
Дымообразуюшая способность, Нпм2/кг 47,70
Потребление кислорода (Ог), кг/кг -1,3690
Выделение газа:
углекислого (СО2), кг/кг 1,47800
угарного (СО), кг/кг 0,03000
хлористого водорода (НС1), кг/кг.. 0,00580

Библиотеки, архивы; книги, журналы на стеллажах
Низшая теплота сгорания, кДж/кг 14500,0
Линейная скорость пламени, м/с / Плотность ГЖ, кг/м3 0,0103
Удельная скорость выгорания, кг/м2с 0,01100
Дымообразуюшая способность, Нпм2/кг 49,50
Потребление кислорода (О2), кг/кг -1,1540
Выделение газа:
углекислого (СО2), кг/кг 1,10870
угарного (СО), кг/кг 0,09740
хлористого водорода (НС1), кг/кг. .0,00000

Верхняя одежда; ворс, ткани (шерсть+нейлон)
Низшая теплота сгорания, кДж/кг 23300,0
Линейная скорость пламени, м/с / Плотность ГЖ, кг/м3 0,0835
Удельная скорость выгорания, кг/м2-с 0,01300
Дьшообразуюшая способность, Нпм2/кг 129,00
Потребление кислорода (О2), кг/кг -3,6980
Выделение газа:
углекислого (СО2), кг/кг 0,46700
угарного (СО), кг/кг 0,01450
хлористого водорода (HС1), кг/кг 0,00000

Резинотехн. изделия; резина, изделия из нее
Низшая теплота сгорания, кДж/кг 36000,0
Линейная скорость пламени, м/с / Плотность ГЖ, кг/м3.... 0,0184
Удельная скорость выгорания, кг/м2-с 0,01120
Дымообразуюшая способность, Нп м2/кг 850,00
Потребление кислорода (О2), кг/кг -2,9900
Выделение газа:
углекислого (СО2), кг/кг 0,41600
угарного (СО), кг/кг.. 0,01500
хлористого водорода (НС1), кг/кг 0,00000

Автомобиль; 0,3*(резина, бензин)+0,15*(ППУ, искожа ПВХ)+0,1* эмаль
Низшая теплота сгорания, кДж/кг 31700,0
Линейная скорость пламени, м/с / Плотность ГЖ, кг/м3 0,0068
Удельная скорость выгорания, кг/м2 с 0,02330
Дымообразуюшая способность, Нп м2/кг 487,00
Потребление кислорода (О2), кг/кг. -2,6400
Выделение газа:
углекислого (СО2), кг/кг 1,29500
угарного (СО), кг/кг 0,09700

Кабинет; мебель+бумага (0,75+0,25)
Низшая теплота сгорания, кДж/кг.14002,0
Линейная скорость пламени, м/с / Плотность ГЖ, кг/м3 0,042
Удельная скорость выгорания, кг/м2с.0,01290
Дымообразуюшая способность, Нпм2/кг.. 53,00
Потребление кислорода (О2), кг/кг. .-1,1610
Выделение газа:
углекислого (СО2), кг/кг...0,64200
угарного (СО), кг/кг....... 0,03170
хлористого водорода (НС1), кг/кг. , 0,00000

Помещение, облицованное панелями; панели ДВП
Низшая теплота сгорания, кДж/кг 18100,0
Линейная скорость пламени, м/с / Плотность ГЖ, кг/мЗ 0,0405
Удельная скорость выгорания, кг/м2с 0,01430
Дымообразуюшая способность, Нпм2/кг 130,00
Потребление кислорода (О2), кг/кг -1,1500
Выделение газа:
углекислого (СО2), кг/кг 0,68600
угарного (СО), кг/кг 0,02150
хлористого водорода (НС1), кг/кг.... г.. 0,00000

Литература

Федеральный закон РФ от 22 июля 2008 г. № 123-ФЗ «Технический регламент о требованиях пожарной безопасности».
ГОСТ 12.1.004-91* Пожарная безопасность. Общие требования.
ГОСТ 12.1.033-81* Пожарная безопасность. Термины и определения.
СП 118.13330.2012 Общественные здания и сооружения.
СНиП 21-01-97* Пожарная безопасность зданий и сооружений.
Холщевников В.В., Самошин Д.А. Парфененко А.П., Кудрин И.С., Истратов Р.Н., Белосхов И.Р.Эвакуация и поведение людей при пожарах: Учеб. пособие. - М.: Академия ГПС МЧС России, 2015. - 262 с.

Введение

В современных условиях разработка экономически оптимальных и эффективных противопожарных мероприятий немыслима без научно-обоснованного прогноза динамики опасных факторов пожара (ОФП).

Прогнозирование ОФП необходимо:

· при создании и совершенствовании систем сигнализации и автоматических систем пожаротушения;

· при разработке оперативных планов тушения (планировании действий боевых подразделений на пожаре);

· при оценке фактических пределов огнестойкости;

· для расчета пожарного риска и многих других целей.

Современные методы прогнозирования ОФП позволяют не только спрогнозировать вероятные пожары, но и смоделировать уже произошедшие пожары для их анализа и оценки действия РТП.

Опасными факторами пожара, воздействующими на людей и материальные ценности (согласно Федеральному закону Российской Федерации от 22 июля 2008 г. №123-ФЗ «Технический регламент о требованиях пожарной безопасности»), являются:

· пламя и искры;

· повышенная температура окружающей среды;

· пониженная концентрация кислорода;

· токсичные продукты горения и термического разложения;

· снижение видимости в дыму;

· тепловой поток.

С научных позиций опасные факторы пожара являются физическими понятиями и, следовательно, каждый из них представлен в количественном отношении физической величиной.

Современные научные методы прогнозирования ОФП основываются на математических моделях пожара. Математическая модель пожара описывает в самом общем виде изменение параметров состояния среды в помещении с течением времени, а также параметров состояния ограждающих конструкций этого помещения и различных элементов (технологического) оборудования.

Основные уравнения, из которых состоит математическая модель пожара, вытекают из фундаментальных законов природы: первого закона термодинамики и закона сохранения массы. Эти уравнения отражают и увязывают всю совокупность взаимосвязанных и взаимообусловленных процессов, присущих пожару, таких как тепловыделение в результате горения, дымовыделение в пламенной зоне, изменение оптических свойств газовой среды, выделение и распространение токсичных газов, газообмен помещения с окружающей средой и со смежными помещениями, теплообмен и нагревание ограждающих конструкций, снижение концентрации кислорода в помещении.

Методы прогнозирования ОФП различают в зависимости от вида математической модели пожара. Математические модели пожара в помещении условно делятся на три вида: интегральные, зонные и полевые (дифференциальные).

Чтобы сделать научно обоснованный прогноз, необходимо обратиться к той или иной модели пожара. Выбор модели определяется целью (задачами) прогноза (исследования) для заданных условий однозначности (характеристики помещения, горючего материала и т.д.) путем решения системы дифференциальных уравнений, которые составляют основу выбранной математической модели.

Интегральная модель пожара позволяет получить информацию (т.е. позволяет сделать прогноз) о среднеобъемных значениях параметров состояния среды в помещении для любого момента развития пожара. При этом для того, чтобы сопоставлять (соотносить) средние (т.е. среднеобъемные) параметры среды с их предельными значениями в рабочей зоне, используются формулы, полученные на основе экспериментальных исследований пространственного распределения температур, концентраций продуктов горения, оптической плотности дыма и т.д.

Однако даже при использовании интегральной модели пожара получить аналитическое решение системы обыкновенных дифференциальных уравнений в общем случае невозможно. Реализация выбранного метода прогнозирования возможна только путем ее численного решения при помощи компьютерного моделирования.

1. Тема и задачи курсовой работы

Курсовая работа является одним из видов самостоятельной учебной работы слушателей по освоению учебного материала и завершающим этапом изучения методов прогнозирования ОФП на базе математических моделей пожара, рассматриваемых на дисциплине «Прогнозирование опасных факторов пожара», а также формой контроля со стороны учебного заведения за уровнем соответствующих знаний и умений курсантов.

Курсовая работа ставит перед слушателями следующие задачи:

· закрепить и углубить знания в области математического моделирования динамики опасных факторов пожара;

· на конкретных примерах получить сведения о степени взаимообусловленности и взаимосвязанности всех физических процессов, присущих пожару (газообмен помещения с окружающей средой, тепловыделение в пламенной зоне и нагревание строительных конструкций, дымовыделение и изменение оптических свойств газовой среды, выделение и распространение токсичных газов и др.);

· усвоить методику прогнозирования ОФП с помощью компьютерной программы, реализующей интегральную математическую модель пожара;

· получить навыки пользования компьютерными программами при исследовании пожаров.

Тема и цель курсовой работы - прогнозирование опасных факторов пожара в помещении (назначение и другие характеристики которого определяются вариантом задания).

2. Требования к содержанию и оформлению курсовой работы

Курсовая работа выполняется в соответствии с методическими указаниями и состоит из расчетно-пояснительной записки и графической части. Расчетно-пояснительная записка состоит из пояснительного текста, результатов расчетов в виде таблиц, чертежей и схем, отражающих геометрические характеристики объекта и картину газообмена в помещении при пожаре. Графическая часть представлена графиками развития опасных факторов пожара в помещении в течение времени.

Необходимый справочный материал дан в приложениях к указаниям и в рекомендуемой литературе.

Прежде чем приступить к выполнению курсовой работы, необходимо: изучить материал по дисциплине, ознакомиться с методическими указаниями, подобрать рекомендуемую учебную, справочную и нормативную литературу. Ответы по каждому пункту задания выдаются в развернутом виде с обоснованием.

Работа должна быть выполнена аккуратно, чернилами черного цвета или напечатана черным шрифтом на печатных листах формата А4. Текст в пояснительной записке следует писать разборчиво, без сокращений слов (за исключением общепринятых сокращений), на одной стороне листа. Компьютерный вариант работы набирается в текстовом процессоре Word, шрифт Times New Roman с 1-1,5 межстрочным интервалом. Размер шрифта для текста - 12 или 14, для формул - 16, для таблиц - 10, 12 или 14. Размеры полей на листе - 2 см со всех сторон. Абзацный отступ не менее 1 см.

При расчете необходимого времени эвакуации следует приводить формулы и подставляемые в них величины, единицы измерения физических величин, получаемых в ответе.

Заголовки разделов и глав пишутся прописными буквами. Заголовки подразделов - строчными буквами (кроме первой прописной). Переносы слов в заголовках не допускаются. Точка в конце заголовка не ставится. Нумерация таблиц, рисунков и графиков должна быть сквозной.

Страницы курсовой работы должны быть пронумерованы арабскими цифрами. Первой страницей является титульный лист, второй - задание на выполнение курсовой работы, третьей - содержание и т.д. На первой странице курсовой работы номер не ставится. Страницы курсовой работы, кроме титульного листа, и задания на курсовую работу должны быть пронумерованы. Бланк задания на выполнение курсовой работы приведен в приложении 1.

На титульном листе должны быть указаны:

наименование министерства, учебного заведения и кафедры, на которой выполняется курсовая работа;

тема курсовой работы и вариант задания;

Ф.И.О. слушателя, выполнившего курсовую работу;

звание, должность, Ф.И.О. научного руководителя;

город и год выполнения курсовой работы.

В конце работы необходимо указать использованную литературу (фамилия и инициалы автора, полное наименование книги, издательство и год издания). Оформленную курсовую работу слушатель должен подписать, поставить дату и сдать на проверку на факультет заочного обучения. Наличие допуска к защите является основанием для вызова слушателя на лабораторно-экзаменационную сессию.

Если работа удовлетворяет требованиям, предъявляемым к ней, то руководитель допускает ее к защите. Работа, признанная не отвечающим предъявленным требованиям, возвращается обучаемому на доработку.

Защита курсовых работ слушателями факультета заочного обучения может проводиться во время сессии. Результаты защиты оцениваются по четырехбалльной системе: «отлично», «хорошо», «удовлетворительно», «неудовлетворительно». Руководитель проекта проставляет оценку на титульном листе работы, в ведомости, зачетной книжке обучаемого и заверяет подписью. Проставляются только положительные оценки.

При получении неудовлетворительной оценки слушатель обязан повторно выполнить работу по новой теме или переработать прежнюю.

3. Выбор варианта задания и исходные данные

Вариант задания на выполнение курсовой работы определяется по номеру в списке учебной группы (по номеру в журнале группы). Номер варианта указывается на титульном листе курсовой работы. В зависимости от года поступления слушателей на обучение (набор 2010 г., 2011 г. и т.д.) исходные данные для расчетов (температура атмосферного воздуха и внутри помещения, размеры помещения и проемов, параметры горючей нагрузки и т.д.) приведены в таблицах 1-5 (Приложение 2).

Данные, полученные с помощью компьютерного моделирования и необходимые для выполнения главы 3, выдаются по вариантам индивидуально в электронном виде на установочной лекции по дисциплине.

Дополнительные данные для всех вариантов:

критическая температура для остекления - 300°С;

число проемов - 2 (окна и дверь);

противодымная механическая вентиляция - отсутствует;

автоматическая установка пожаротушения (АУП) - отсутствует;

все остальные не указанные параметры принять по умолчанию.

Сокращения , принятые при изложении курса «Прогнозирование опасных факторов пожара»:

ОФП - опасные факторы пожара;

ПДЗ - предельно-допустимое значение опасного фактора пожара;

ПРД - плоскость равных давлений (нейтральная плоскость);

ГМ - горючий материал.

1. В соответствии с вариантом задания в 1 главе курсовой работы произвести расчет исходных параметров горючей нагрузки в рассматриваемом помещении.

2. Начертить план здания, указать на плане размеры помещения и горючей нагрузки.

В главе 2 привести описание системы дифференциальных уравнений, на основе которых создана интегральная математическая модель пожара в помещении, с полным разъяснением всех вошедших в нее физических величин.

В соответствии с вариантом задания на выполнение курсовой работы взять у преподавателя готовые табличные данные (таблица 1) по динамике развития среднеобъемных значений ОФП при свободном развитии пожара, рассчитанные с помощью компьютерной программы INTMODEL, реализующей интегральную математическую модель пожара в помещении.

5. По табличным данным построить соответствующие графические зависимости среднеобъемных параметров от времени развития пожара: m (t);

µ m (t); l вид (t); (t); (t); (t); с m (t); Y*(t); S пож (t); G в (t); G г (t); ДP(t).

6. Сделать описание и сравнительные выводы по полученным графикам, объяснить скачки на графиках (при их наличии).

7. Руководствуясь рассчитанными с помощью компьютерной программы данными и графическими зависимостями ОФП от времени, в 4 главе курсовой работы охарактеризовать динамику развития отдельных ОФП, последовательность наступления различных событий, в целом описать прогноз развития пожара.

Определить критическую продолжительность пожара по условию достижения каждым опасным фактором пожара предельно допустимого (среднеобъемного) значения и необходимое время эвакуации людей из рассматриваемого помещения:

а) по данным математического моделирования (свести результаты в таблицу 2);

b) по методике определения времени от начала пожара до блокирования эвакуационных путей в результате распространения на них опасных факторов пожара согласно приложению №5 к приказу МЧС России от 10.07.2009 №404 к пункту 33 (Методики определения расчетных величин пожарного риска на производственных объектах).

Полученные результаты расчетов отразить в 4 главе курсовой работы, там же сделать выводы: в чем сходство и различие этих методик, чем можно объяснить различие в результатах расчетов.

9. Согласно результатам таблицы 2 сделать вывод о своевременности срабатывания пожарных извещателей, установленных в помещении. В случае их неэффективной работы предложить им альтернативную замену (приложение 3).

10. Провести расчеты параметров ОФП для уровня рабочей зоны (ОФП л) при свободном развитии пожара в момент времени 11 минут, согласно формуле:

(ОФП л - ОФП 0) = (ОФП m - ОФП 0)·Z,

где ОФП л - локальное значение ОФП;

ОФП 0 - начальное значение ОФП;

ОФП m - среднеобъемное значение опасного фактора пожара;- безразмерный параметр, вычисляемый по формуле:

, при H £ 6 м,

где h - высота рабочей зоны, м;

Н - высота помещения, м.

11. Результаты расчетов ОФП для уровня рабочей зоны внести в таблицу в 5 главе курсовой работы.

12. На основании полученных расчетов для времени 11 минут:

а) привести схему газообмена в помещении для времени развития пожара 11 минут при свободном развитии пожара;

b) дать подробную характеристику оперативной обстановки на пожаре по расчетам ОФП для уровня рабочей зоны, предложить меры по проведению безопасной эвакуации людей.

13. Сделать общий вывод по курсовой работе. Вывод должен включать:

а) краткое описание объекта;

b) анализ ОФП, достигших своего предельно допустимого значения на 11 минуте при свободном развитии пожара;

c) сравнение критического времени наступления ПДЗ по опасным факторам пожара согласно расчетам компьютерной программы INTMODEL и методики определения времени от начала пожара до блокирования эвакуационных путей в результате распространения на них опасных факторов пожара согласно приложению №5 к приказу МЧС России от 10.07.2009 №404;

d) анализ своевременности срабатывания установленных в помещении пожарных извещателей при необходимости предложения по их замене;

e) описание действий персонала объекта при возникновении пожара, исходя из данных, полученных при расчетах;

f) описание действий пожарных подразделений, исходя из положения, что время их прибытия - 10 минута от начала развития пожара;

g) рекомендации владельцу помещения и пожарным расчетам, позволяющие обеспечить безопасную эвакуацию в случае возникновения пожара в помещении. Рекомендации следует увязать с результатами прогнозирования динамики ОФП для данного помещения;

h) вывод о целесообразности и перспективах использования компьютерных программ для расчета динамики ОФП при пожаре.

14. В конце курсовой работы привести список использованной литературы.

5. Образец выполнения курсовой работы

МЧС РОССИИ

Федеральное Государственное бюджетное образовательное

учреждение высшего профессионального образования

«Уральский институт Государственной противопожарной службы

Министерства Российской Федерации по делам гражданской обороны,

чрезвычайным ситуациям и ликвидации последствий стихийных бедствий»

Кафедра физики и теплообмена

КУРСОВАЯ РАБОТА

Тема: Прогнозирование опасных факторов пожара в складском помещении

Вариант №35

Выполнил:

слушатель учебной группы З-461

старший лейтенант внутренней службы Иванов И.И.

Проверил:

старший преподаватель кафедры

физики и теплообмена, к.п.н., капитан внутренней службы

Субачева А.А.

Екатеринбург

на выполнение курсовой работы

по дисциплине «Прогнозирование опасных факторов пожара»

Слушатель Иванов Иван Иванович

Вариант №35 Курс 4 Группа З-461

Наименование объекта: склад хлопка в тюках

Исходные данные

Блок атмосфера

давление, мм. рт. ст.

температура, 0 С

Блок помещение

высота, м

ширина, м

температура, 0 С

проем 1 - штатный (дверь)

нижний срез, м

∑ ширина, м

верхний срез, м

вскрытие, 0 С

проем 2 - штатный (окна)

∑ ширина, м

нижний срез, м

вскрытие, 0 С

верхний срез, м

вид горючего материала

хлопок в тюках

дымовыделение Нп*м 2 /кг

выделение СО, кг/кг

ширина, м

выделение СО 2 , кг/кг

количество ГН, кг

удельная скорость выгорания, кг/м 2 *с

выделение тепла МДж/кг

скорость распространения пламени, м/с



потребление кислорода кг/кг

Срок сдачи: «____»__________

Слушатель____________________ Руководитель_______________

1. Исходные данные

Помещение пожара расположено в одноэтажном здании. Здание построено из сборных железобетонных конструкций и кирпича. В здании наряду с помещением склада находятся два рабочих кабинета. Оба помещения отделены от склада противопожарной стеной. План объекта приведен на рисунке 1.

(Требуется проставить на схеме размеры помещения и расчетную массу горючей нагрузки согласно своему варианту!)

Рис. 1. План здания

Размеры склада:

длина l 1 = 60 м;

ширина l 2 = 24 м;

высота 2h = 6 м.

В наружных стенах помещения склада имеется 10 одинаковых оконных проемов. Расстояние от пола до нижнего края каждого оконного проема Y H = 1,2 м. Расстояние от пола до верхнего края проема Y B = 2,4 м. Суммарная ширина оконных проемов = 24 м. Остекление оконных проемов выполнено из обычного стекла. Остекление разрушается при среднеобъемной температуре газовой среды в помещении, равной 300°С.

Помещение склада отделено от рабочих кабинетов противопожарными дверьми, ширина и высота которых 3 м. При пожаре эти проемы закрыты. Помещение склада имеет один дверной проем, соединяющий его с наружной средой. Ширина проема равна 3,6 м. Расстояние от пола до верхнего края дверного проема Y в = 3, Y н =0. При пожаре этот дверной проем открыт, т.е. температура вскрытия 20 0 C.

Полы бетонные, с асфальтовым покрытием.

Горючий материал представляет собой хлопок в тюках. Доля площади, занятая горючей нагрузкой (ГН) = 30%.

Площадь пола, занятая ГН, находится по формуле:

=;

где − площадь пола.

Количество горючего материала на 1 Р 0 = 10. Общая масса горючего материала .

Горение начинается в центре прямоугольной площадки, которую занимает ГМ. Размеры этой площадки:

Свойства ГН характеризуются следующими величинами:

теплота сгорания Q = 16,7 ;

удельная скорость выгорания = 0,0167 ;

скорость распространения пламени по поверхности ГМ ;

дымообразующая способность D = 0,6 ;

потребление кислорода = 1,15 ;

выделение диоксида углерода = 0,578 ;

выделение оксида углерода = 0,0052 .

Механическая вентиляция в помещениях отсутствует. Естественная вентиляция осуществляется через дверные и оконные проемы.

Отопление центральное водяное.

Внешние атмосферные условия:

ветер отсутствует, температура наружного воздуха 20 0 C = 293 К (согласно выбранному варианту);

давление (на уровне Y=h) Р а = 760 мм. рт. ст., т.е. = 101300 Па.

Параметры состояния газовой среды внутри помещения перед пожаром :

Т = 293 К (согласно выбранному варианту);

Р = 101300 Па;

Другие параметры:

критическая температура для остекления − 300 о С;

материал ограждающих конструкций - железобетон и кирпич;

температура воздуха в помещении - 20 о С;

автоматическая система пожаротушения − отсутствует;

противодымная механическая вентиляция − отсутствует.

2. Описание интегральной математической модели свободного развития пожара в складском помещении

Интегральная математическая модель пожара в помещении разработана на основе уравнений пожара, изложенных в работах . Эти уравнения вытекают из основных законов физики: закона сохранения вещества и первого закона термодинамики для открытой системы и включают в себя:

уравнение материального баланса газовой среды в помещении :

V(dс m /dф) = G B + ш - G r , (1)

где V - объем помещения, м 3 ; с m - среднеобъемная плотность газовой среды кг/м 3 ; ф - время, с; G B и G r - массовые расходы поступающего в помещение воздуха и уходящих из помещения газов, кг/с; ш - массовая скорость выгорания горючей нагрузки, кг/с;

уравнение баланса кислорода :

Vd(p 1)/dф = x 1в G B - x 1 n 1 G r - ш L 1 Ю, (2)

где x 1 - среднеобъемная массовая концентрация кислорода в помещении; х 1в - концентрация кислорода в уходящих газах; n 1 - коэффициент, учитывающий отличие концентрации кислорода в уходящих газах х 1г от среднеобъёмного значения x 1 , n 1 = х 1г /x 1 ; L 1 - скорость потребления кислорода при горении, p 1 - парциальная плотность кислорода в помещении;

уравнение баланса продуктов горения :

Vd(p 2)/dф = ш L 2 Ю - x 2 n 2 G r , (3)

где X i - среднеобъемная концентрация i-гo продукта горения; L i - скорость выделения i-гo продукта горения (СО, СО2); n i - коэффициент, учитывающий отличие концентрации i-гo продукта в уходящих газах x iг от среднеобъёмного значения x i , n i = x iг /х i ; р 2 - парциальная плотность продуктов горения в помещении;

уравнение баланса оптического количества дыма в помещении :

Vd ()/d =Dш - n 4 G r / р m - к c S w , (4)

где - среднеобъемная оптическая плотность дыма; D - дымообразующая способность ГМ; n 4 - коэффициент, учитывающий отличие концентрации дыма в уходящих из помещения нагретых газах от среднеобъемной оптической концентрации дыма, n4= м mг /м m ;

уравнение баланса энергии U:

dU/dф = hQ p н ш + i г ш + С рв Т в G в - С р Т m m G r - Q w , (5)

где P m - среднеобъемное давление в помещении, Па; С р m , Т m - среднеобъемные значения изобарной теплоемкости и температуры в помещении; Q p н - низшая рабочая теплота сгорания ГН, Дж/кг; С рв, Т в - изобарная теплоемкость и температура поступающего воздуха, К; i г - энтальпия газификации продуктов горения ГН, Дж/кг; m - коэффициент, учитывающий отличие температуры Т и изобарной теплоемкости С рг уходящих газов от среднеобъемной температуры Т m и среднеобъемной изобарной теплоемкости С р m ,

m = С рг Т г /С р m Т m ;

Ю - коэффициент полноты сгорания ГН; Q w - тепловой поток в ограждение, Вт.

Среднеобъемная температура Т m связана со среднеобъёмным давлением Р m и плотностью р m уравнением состояния газовой среды в помещении:

P m = с m R m T m . (6)

Уравнение материального баланса пожара с учетом работы приточно-вытяжной системы механической вентиляции, а так же с учетом работы системы объемного тушения пожара инертным газом примет следующий вид:

VdP m / dф = ш + G B - G r + G пр - G выт + G ов, (7)

Вышеуказанная система уравнений решается численными методами с помощью компьютерной программы. Примером может служить программа INTMODEL.

. Расчет динамики ОФП с помощью компьютерной программы INTMODEL

Результаты компьютерного моделирования

Учебная компьютерная программа INTMODEL реализует описанную выше математическую модель пожара и предназначена для расчета динамики развития пожара жидких и твердых горючих веществ и материалов в помещении. Программа позволяет учитывать вскрытие проемов, работу систем механической вентиляции и объемного тушения пожара инертным газом, а также учитывает кислородный баланс пожара, позволяет рассчитывать концентрацию оксидов углерода СО и СО 2 , задымленность помещения и дальность видимости в нем.

Таблица 1. Динамика развития параметров газовой среды в помещении и координат ПРД

Вpемя, мин Температура t m , 0 С Оптическая плотность дыма µ m , Нп/м Дальность видимости l m , м ,

масс.%,

масс.%, масс.%с m , кг/м 3 Нейтральная плоскость - ПРД Y*, мG в, кг/сG г, кг/сДP, ПаS пож, м 2









Изменение среднеобъемных параметров газовой среды во времени

Рис. 2. Изменение среднеобъемной температуры газовой среды во времени

Описание графика: Рост температуры в первые 22 минуты пожара можно объяснить горением в режиме ПРН, что обусловлено достаточным содержанием кислорода в помещении. С 23 минуты пожар переходит в режим ПРВ в связи со значительным снижением концентрации кислорода. С 23 минуты по 50 минуту интенсивность горения постоянно снижается, несмотря на продолжающееся возрастание площади горения. Начиная с 50 минуты, пожар снова переходит в режим ПРН, что связано с увеличением концентрации кислорода в результате выгорания горючей нагрузки.

Выводы по графику: На графике температуры можно условно выделить 3 стадии развития пожара. Первая стадия - нарастание температуры (приблизительно до 22 мин.), вторая - квазистационарная стадия (с 23 мин. до 50 мин.), и третья - стадия затухания (с 50 мин. до полного выгорания горючей нагрузки).

Рис. 3. Изменение оптической плотности дыма во времени

Описание графика: В начальной стадии пожара выделение дыма незначительно, полнота сгорания максимальна. В основном дым начинает выделяться после 22 минуты от начала возгорания, а превышение ПДЗ по среднеобъемному значению плотности дыма произойдет примерно на 34 минуте. Начиная с 52 минуты, с переходом в режим затухания, задымление уменьшается.

Выводы по графику: Выделение значительных количеств дыма началось только с переходом пожара в режим ПРВ. Опасность снижения видимости в дыму в данном помещении невелика - ПДЗ будет превышено ориентировочно только после 34 минут от начала возгорания, что так же можно объяснить наличием в помещении открытых проемов большого размера (дверь).

Рис. 4. Изменение дальности видимости в помещении во времени

Описание графика: На протяжении 26 минут развития пожара дальность видимости в горящем помещении остается удовлетворительной. С переходом в режим ПРВ видимость в горящем помещении быстро ухудшается.

Выводы по графику: Дальность видимости связана с оптической плотностью дыма соотношением . То есть дальность видимости обратно пропорциональна оптической плотности дыма, поэтому при увеличении задымления дальность видимости уменьшается и наоборот.


Рис. 5. Изменение среднеобъемной концентрации кислорода во времени

Описание графика: В первые 9 минут развития пожара (начальная стадия) среднеобъемная концентрация кислорода почти не изменяется, т.е. потребление кислорода пламенем низкое, что может быть объяснено малыми размерами очага горения в это время. По мере увеличения площади горения содержание кислорода в помещении снижается. Примерно с 25 минуты от начала горения содержание кислорода стабилизируется на уровне 10-12 масс.% и остается почти неизменным примерно до 49-й минуты пожара. Таким образом, с 25-й по 49-ю минуту в помещении реализуется режим ПРВ, т.е. горение в условиях недостатка кислорода. Начиная с 50-й минуты содержание кислорода увеличивается, что соответствует стадии затухания, при которой поступающий воздух снова постепенно заполняет помещение.

Выводы по графику: график концентрации кислорода, аналогично графику температуры, позволяет выявить моменты смены режимов и стадий горения. Момент превышения ПДЗ по кислороду на данном графике отследить нельзя, для этого понадобится пересчитать массовую долю кислорода в его парциальную плотность, используя значение среднеобъемной плотности газа и формулу .

Рис. 6. Изменение среднеобъемной концентрации СО во времени развития пожара

Описание графика: сделать описание и выводы по графикам по аналогии с вышеприведенными.

Выводы по графику:

Рис. 7. Изменение среднеобъемной концентрации СО 2 во времени

Описание графика:

Выводы по графику:

Рис. 8. Изменение среднеобъемной плотности газовой среды во времени

Описание графика:

Выводы по графику:

Рис. 9. Изменение положения плоскости равных давлений во времени

Описание графика:

Выводы по графику:

Рис. 10. Изменение притока свежего воздуха в помещение от времени развития пожара

Описание графика:

Выводы по графику:

Рис. 11. Изменение оттока нагретых газов из помещения от времени развития пожара

Описание графика:

Выводы по графику:

Рис. 12. Изменение разности давлений во времени

Описание графика:

Выводы по графику:

Рис. 13. Изменение площади горения при пожаре во времени

Описание графика:

Выводы по графику:

Описание обстановки на пожаре в момент времени 11 минут

Согласно п. 1 ст. 76 ФЗ-123 «Технический регламент о требованиях пожарной безопасности», время прибытия первого подразделения пожарной охраны к месту вызова в городских поселениях и городских округах не должно превышать 10 минут. Таким образом, описание обстановки на пожаре проводится на 11 минуту от начала пожара.

В начальные моменты времени при свободном развитии пожара параметры газовой среды в помещении достигают следующих значений:

− достигается температура 97°С (переходит пороговое значение 70°C);

− дальность видимости практически не изменилась и составляет 64,62 м, т.е. еще не переходит пороговое значение в 20 м;

− парциальная плотность газов составляет:

с= 0,208 кг/м 3 , что меньше предельной парциальной плотности по кислороду;

с= 0,005 кг/м 3 , что меньше предельной парциальной плотности по углекислому газу;

с= 0,4*10 -4 кг/м 3 , что меньше предельной парциальной плотности по угарному газу;

ПРД будет находиться на уровне 0,91 м;

площадь горения составит 24,17 м 2 .

Таким образом, расчеты показали, что на 11 минуту свободного развития пожара, следующие ОФП достигнут своего предельно допустимого значения: среднеобъемная температура газовой среды (на 10 минуте).

. Время достижения пороговых и критических значений ОФП

Согласно ФЗ-123 «Технический регламент о требованиях пожарной безопасности», необходимым временем эвакуации считается минимальное время достижения одним из опасных факторов пожара своего критического значения.

Необходимое время эвакуации из помещения по данным математического моделирования

Таблица 2. Время достижения пороговых значений

Пороговые значения

Время достижения, мин

Предельная температура газовой среды t = 70°C

Критическая дальность видимости 1 кр = 20 м

Предельно допустимая парциальная плотность кислорода с = 0,226 кг/м 3 10


Предельно допустимая парциальная плотность двуокиси углерода (с) пред = (с) пред = 0,11 кг/м 3 не достигается


Предельно допустимая парциальная плотность оксида углерода (с) пред = (с) пред = 1,16*10 -3 кг/м 3 не достигается


Максимальная среднеобъемная температура газовой среды Т m = 237 + 273 = 510 К

Критическая температура для остекления t = 300°C

не достигается

Пороговая температура для тепловых извещателей ИП-101-1А t п opor = 70°C


В данном случае минимальным временем для эвакуации из помещения склада является время достижения предельной температуры газовой среды, равное 10 мин.

Вывод:

а) охарактеризовать динамику развития отдельных ОФП, последовательность наступления различных событий и в целом описать прогноз развития пожара;

b ) сделать вывод о своевременности срабатывания пожарных извещателей, установленных в помещении (см. п. 8 таблица 2). В случае неэффективной работы пожарных извещателей предложить им альтернативу (приложение 3).

Определение времени от начала пожара до блокирования
эвакуационных путей опасными факторами пожара

Рассчитаем необходимое время эвакуации для помещения с размерами 60·24·6, пожарной нагрузкой в котором является хлопок в тюках. Начальная температура в помещении 20°С.

Исходные данные:

помещение

свободный объем

безразмерный параметр

;

температура t 0 = 20 0 С;

вид горючего материала - хлопок в тюках - ТГМ, n=3;

теплота сгорания Q = 16,7 ;

удельная скорость выгорания = 0,0167

под знаком логарифма получается отрицательное число, поэтому данный фактор не представляет опасности.

Критическая продолжительность пожара:

t кр = miníý = í746; 772; ý = 746 с.

Критическая продолжительность пожара обусловлена временем наступления предельно допустимого значения температуры в помещении.

Необходимое время эвакуации людей из складского помещения:

t нв = 0,8*t кр /60 = 0,8*746/60 = 9,94 мин.

Сделать заключение о достаточности / недостаточности времени на эвакуацию по данным расчета.

Вывод: сравнить необходимое время эвакуации, полученное различными методами, и, при необходимости, объяснить различия в результатах.

. Расчет динамики ОФП для уровня рабочей зоны. Анализ обстановки на пожаре на момент времени 11 минут

Уровень рабочей зоны согласно ГОСТ 12.1.004-91 «Пожарная безопасность. Общие требования» принимается равным 1,7 метра.
















На 11 минуте горения газообмен протекает со следующими показателями: приток холодного воздуха составляет 3,26 кг/с, а отток нагретых газов из помещения - 10,051 кг/с.

В верхней части дверного проема идет отток задымленных нагретых газов из помещения, плоскость равных давлений находится на уровне 1,251 м, что ниже уровня рабочей зоны.

Вывод: на основании результатов расчетов дать подробную характеристику оперативной обстановки на момент прибытия пожарных подразделений, предложить меры по проведению безопасной эвакуации людей.

Общий вывод по работе

Сделать общий вывод по работе, включающий:

а) краткое описание объекта;

b ) общая характеристика динамики ОФП при свободном развитии пожара;

c ) сравнение критического времени наступления ПДЗ по опасным факторам пожара согласно расчетам компьютерной программы INTMODEL и методики определения времени от начала пожара до блокирования эвакуационных путей в результате распространения на них опасных факторов пожара согласно приложению №5 к приказу МЧС России от 10.07.2009 №404;

d ) анализ срабатывания установленных в помещении пожарных извещателей при необходимости предложения по их замене;

e ) характеристика оперативной обстановки на момент прибытия пожарных подразделений, предложения по проведению безопасной эвакуации людей;

f ) вывод о целесообразности и перспективах использования компьютерных программ для расчета динамики ОФП при пожаре.

Литература

1. Терентьев Д.И. Прогнозирование опасных факторов пожара. Курс лекций / Д.И. Терентьев, А.А. Субачева, Н.А. Третьякова, Н.М. Барбин // ФГБОУ ВПО «Уральский институт ГПС МЧС России». - Екатеринбург, 2012. - 182 с.

2. Кошмаров Ю.А. Прогнозирование ОФП в помещении: Учебное пособие / Ю.А. Кошмаров/ - М.: Академия ГПС МВД России, 2000. -118 с.

Федеральный закон Российской Федерации от 22 июля 2008 г. №123-ФЗ «Технический регламент о требованиях пожарной безопасности».

Приказ МЧС РФ от 10.07.2009 №404 (с изменениями от 14 декабря 2010 г.) «Об утверждении методики определения расчетных величин пожарного риска на производственных объектах». - Пожаровзрывобезопасность. - №8. - 2009. - Стр. 7-12.

Приказ МЧС РФ от 30.06.2009 №382 (с изменениями от 11 апреля 2011) «Об утверждении методики определения расчетных величин пожарного риска в зданиях, сооружениях и строениях различных классов функциональной пожарной опасности». - Пожарная безопасность №3. - 2009. - Стр. 7-13.